a2 United States Patent

Chen et al.

US009479779B2

US 9,479,779 B2
Oct. 25, 2016

(10) Patent No.:
45) Date of Patent:

(54)

(71)

(72)

(73)

")

@

(22)

(65)

(60)

(1)

(52)

(58)

SUB-BITSTREAM EXTRACTION FOR
MULTIVIEW, THREE-DIMENSIONAL (3D)
AND SCALABLE MEDIA BITSTREAMS

Applicant: QUALCOMM Incorporated, San
Diego, CA (US)

Inventors: Ying Chen, San Diego, CA (US);
Ye-Kui Wang, San Diego, CA (US)

Assignee: QUALCOMM Incorporated, San
Diego, CA (US)
Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 421 days.

Appl. No.: 14/042,524
Filed: Sep. 30, 2013

Prior Publication Data

US 2014/0092213 Al Apr. 3, 2014

Related U.S. Application Data

Provisional application No. 61/708,522, filed on Oct.
1, 2012.

Int. CL.

HO4N 19/597 (2014.01)

HO4N 21/2343 (2011.01)

HO4N 1930 (2014.01)

HO4N 19/40 (2014.01)

U.S. CL

CPC ... HO04N 19/00769 (2013.01); HO4N 19/30

(2014.11); HO4N 19/40 (2014.11); HO4N
19/597 (2014.11); HO4N 21/2343 (2013.01)
Field of Classification Search
CPC HO4AN 19/70; HO4N 19/597; HO4N 19/44;
HO4N 19/188; HO4N 21/4343
USPC ..o 348/43; 375/240.01, 240.25
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

2011/0032999 Al 2/2011 Chen et al.

2012/0036544 Al 2/2012 Chen et al.

2012/0056981 Al* 3/2012 Tian ..o HO4N 19/597
348/42

2012/0229602 Al 9/2012 Chen et al.

2012/0269275 Al* 10/2012 Hannuksela HO4N 13/0048

375/240.25

2013/0027523 Al* 12013 Girdzijauskas ... HO4N 13/0022
348/48

2013/0113882 Al 5/2013 Haque et al.

2013/0114670 Al 5/2013 Chen et al.

2013/0136176 Al 5/2013 Chen et al.

2013/0188738 Al 7/2013 Hannuksela et al.

OTHER PUBLICATIONS

Bartnik et al., “HEVC Extension for Multi view Video Coding and
Multi view Video Plus Depth Coding”, VCEG Meeting; MPEG
Meeting; Feb. 3-10, 2012; Torino; (Video Coding Experts Group of
ITU-T SG.16), No. VCEG-AR13, XP030003856, 42 pp.

(Continued)

Primary Examiner — Andy Rao

Assistant Examiner — Jared Walker

(74) Attorney, Agent, or Firm — Shumaker & Sieffert,
PA.

(57) ABSTRACT

Techniques are described for modal sub-bitstream extrac-
tion. For example, a network entity may select a sub-
bitstream extraction mode from a plurality of sub-bitstream
extraction modes. Each sub-bitstream extraction mode may
define a particular manner in which to extract coded pictures
from views or layers to allow a video decoder to decode
target output views or layers for display. In this manner, the
network entity may adaptively select the appropriate sub-
bitstream extraction technique, rather than a rigid, fixed
sub-bitstream extraction technique.

26 Claims, 7 Drawing Sheets

10

SOURCE DEVICE DESTINATION DEVICE
12 14
VIDEO SOURCE DISPLAY DEVIGE
18 A
[y
¥ (——m -
VIDEO | STORAGE | VIDEO
ENCODER DEVICE DECODER
20 | : 30
T 1
y
OUTPUT | >
INTERFACE p| INPUT INTERFACE
2 28

US 9,479,779 B2
Page 2

(56) References Cited

OTHER PUBLICATIONS

Bross et al., “High efficiency video coding (HEVC) text specifica-
tion draft 10 (For FDIS & Last Call),” 12th Meeting: Geneva, CH,
Jan. 14-23, 2013, JCTVC-L1003_v34, 310 pp.

Bross et al., “Editors’ Proposed Corrections to HEVC version 1,”
Joint Collaborative Team on Video Coding (JCT-VC) of ITU-T
SG16 WP3 and ISO/IEC JTCL/SC29/WGII1, 13th Meeting,
Incheon, KR, Apr. 18-26, 2013, JCTVC-M0432)_v3, 310 pp.
Bross et al., “High efficiency video coding (HEVC) text specifica-
tion draft 6,” 8th Meeting: San Jose, CA, USA, Feb. 1-10, 2012,
JCTVC-H1003, 259 pp.

Bross et al., “High efficiency video coding (HEVC) text specifica-
tion draft 7,” 9th Meeting: Geneva, CH, Apr. 27-May 7, 2012,
JCTVC-11003_d2, 290 pp.

Bross et al., “High efficiency video coding (HEVC) text specifica-
tion draft 8,” 10th Meeting: Stockholm, SE, Jul. 11-20, 2012,
JCTVC-J1003_d7, 261 pp.

Bross et al., “High efficiency video coding (HEVC) text specifica-
tion draft 9,” 11th Meeting: Shanghai, CN, Oct. 10-19, 2012,
JCTVC-K1003_v7, 290 pp.

Bross et al.,, “WD4: Working Draft 4 of High-Efficiency Video
Coding,” 6th Meeting: JCTVC-F803_d2, Torino, IT, Jul. 14-22,
2011, 226 pp.

Bross et al.,, “WDS5: Working Draft 5 of High-Efficiency Video
Coding,” 7th Meeting: Geneva, Switzerland, Nov. 21-30, 2011,
JCTVC-G1103_d2, 214 pp.

Chen et al., “Support of Lightweight MVC to AVC Transcoding”,
JVT Meeting; Geneva, (Joint Video of ISO/IEC JTC1/SC29/WG11
and ITU-TSG.16_, No. JVT-AA036, Apr. 24-29, 2008,
XP030007379, ISSN : 0000-0091, 10 pp.

Hannuksela et al., “3D-AVC Draft Text 3,” Document JCT3V-
A1002, Joint Collaborative Team on 3D Video Coding Extension
Development of ITU-T SG 16 WP 3 and ISO/IEC JTC 1/SC 29/WG
11, st Meeting: Stockholm, SE, Jul. 16-20, 2012, 68 pp.
International Search Report and Written Opinion—PCT/US2013/
062893—ISA/EPO—Sep. 12, 2013, 12 pp.

ITU-T H.264, Series H: Audiovisual and Multimedia Systems,
Infrastructure of audiovisual services—Coding of moving video,
Advanced video coding for generic audiovisual services, Mar. 2010,
674 pp.

ITU-T H.264, Series H: Audiovisual and Multimedia Systems,
Infrastructure of audiovisual services—Coding of moving video,
Advanced video coding for generic audiovisual services, The Inter-
national Telecommunication Union. Jun. 2011, 674 pp.

Suzuki et al., “MVC Extension for Inclusion of Depth Maps Draft
Text 47, JCT-3V Meeting; MPEG Meeting; Stockholm; (The Joint
Collaborative Team on 3D Video Coding Extension Development of
ISO/IEC JTC1/SC29/WG11 and ITU-T SG.16), No. JCT3V-A1001,
XP030130179, Jul. 2012, 70 pp.

Tech et al., “3D-HEVC Test Model 1,” Document JCT3V-A1005__
d0, Joint Collaborative Team on 3D Video Coding Extension
Development of ITU-T SG 16 WP 3 and ISO/IEC JTC 1/SC 29/WG
11, 1st Meeting: Stockholm, SE, Jul. 16-20, 2012, 83 pp.

Tech et al., “MV-HEVC Working Draft 1,” Joint Collaborative
Team on 3D Video Coding Extension Development of ITU-T SG 16
WP 3 and ISO/IEC JTC 1/SC 29/WG 11 1st Meeting: Stockholm,
SE, Jul. 16-20, 2012, Document JCT3V-A1004_d0, 20 pp.

Wang et al., “MV-HEVC/SHVC HLS: Multi-mode Bitstream
Extraction in HEVC 3DV and Scalable Extensions”,JCT-3V Meet-
ing; Incheon; (The Jpint Colloborative Team on 3D Video Coding
Extension Development of ISO/IEC JTC1/SC29/WG11 and ITU-T
S$G.16) No. JCT3V-D0050, Apr. 20-26, 2013 XP030130714, 2 pp.
Wiegand et al., “WD2: Working Draft 2 of High-Efficiency Video
Coding,” JCTVC-D503, 4th Meeting: Daegu, KR, Jan. 20-28, 2011,
153 pp.

Wiegand et al., “WD3: Working Draft 3 of High-Efficiency Video
Coding,” Document JCTVC-E603, 5th Meeting: Geneva, CH, Mar.
16-23, 2011, 193 pp.

Wiegand et al., “WD1: Working Draft 1 of High-Efficiency Video
Coding”, JCTVC-C403, 3rd Meeting: Guangzhou, CN, Oct. 7-15,
2010, 137 pp.

Response to Written Opinion from corresponding PCT Application
Serial No. PCT/US2013/062893 filed on May 5, 2014 (5 pages).
Second Written Opinion from corresponding PCT Application
Serial No. PCT/US2013/062893 dated Aug. 22, 2014 (4 pages).
Response to Second Written Opinion from corresponding PCT
Application Serial No. PCT/US2013/062893 filed on Oct. 20, 2014
(31 pages).

International Preliminary Report on Patentability from correspond-
ing PCT Application Serial No. PCT/US2013/062893 dated Feb. 9,
2015 (7 pages).

* cited by examiner

U.S. Patent Oct. 25, 2016 Sheet 1 of 7 US 9,479,779 B2

/10
SOURCE DEVICE DESTINATION DEVICE
12 14
VIDEO SOURCE DISPLAY DEVICE
18 i
[—————
VIDEO | STORAGE | VIDEO
ENCODER - DEVICE - DECODER
20 | 32 : 30
>
OUTPUT
INTERFACE - INPUT INTERFACE
28
22
16

FIG. 1

U.S. Patent Oct. 25, 2016 Sheet 2 of 7 US 9,479,779 B2
23 S P8 s P38 3 PR <
A
|
F8SPE e 3 8 PG S 3
A
|
= - I e [P e Bl ag B A e B 8
A
, N
ClePIIPIIpPIerItePePs o
A LL
|
S P83 > S8 3 3
A
|
g N e Sl e Kl g B Q& P8 -
A
|
Sl Pt P2 & P & N &
A
|
=l bl o 2 THH Y2 T v
A
|
2le P~ P~ P < [o] © ~
o - < = N~
(/7] w w (70} (/7] w (%) (/7]

U.S. Patent Oct. 25, 2016 Sheet 3 of 7 US 9,479,779 B2

T

T10

T9

T8

17

T6

FIG. 3

T5

T3

T2

T

T0

US 9,479,779 B2

Sheet 4 of 7

Oct. 25, 2016

U.S. Patent

¥ 'Old

801
30IA3A LN3ITD

arol
30I1A3A
ONILNOY

oLl
(S)40sSsS3ao0uUd

901
30I1A3A
ONIGOOSNVL

V0l
J0IA3A
ONILNOY

001
MYOMLAN

col
32I1A3A ¥3AN3S

US 9,479,779 B2

Sheet 5 of 7

Oct. 25, 2016

U.S. Patent

¢ Ol

- T-----"""-—-—=---—-—"— -"—- -"- - -®"-"-""-"-"—-—"{®-""—-:-F—":-—-_-—-—--— - - r-_- -—_—-—_—-—_-___——_-—__-__-_—__-————— || - ="

174 [

HU3AOION3 O3AIA |

29 _

9% 8% 00 S04 O3dIA — |

1INN LINN 1IN n Q3aLoNULSNODTY R €9 _

ONIQOON3 A NOILVZILNYNDO INHO4SNVHL w_._m.__._—u_nq_d_u_ _

AdO¥INT 3ISHIANI 3ISUIANI m.uw%mw_m v _

A "NODIY 1NN |

NOILOIa3¥d « _

VHLNI "

— 79

vy Adowaw | !

LIN auNLoId ||

NOILVSN3IdINOD ‘13 |

NOLLOW _

L} L

FA |

)) 1INN _

SINIWITI XVLNAS NOILVINILST [

NOILOIN |

_ [

34 _

L1INN ONISSTI0¥d _

NOILOIa3dd _

—_— 0s |

S1N3IDI4430D e (44 - =5

INHOASNVYL bs LINN st I
vNais3y LIND ONISS3II0Ud - + + SY207803aiA LINA _ viva
Q3ZILNYND NOILVZILNYNO WNOASNVHL | $0073 ONINOILILYVd “ yiva

US 9,479,779 B2

Sheet 6 of 7

Oct. 25, 2016

U.S. Patent

| | yyomian |
- @3aoon3

9 'Old
|/ - T T 1
= = _
_ 3 88 98 _
_ 1INN 1INN
- ozan | mpm__u.._d_ p WHO4SNVYL [| NOILVZILNVND _
aagooaa | 06 #0018 | ISUIANI ESEL
| Ivnaisay i _
[
_ ﬁ _
| — I
| 76 4] |
_ AYOWIW 1INN _
_ JUNLOId NOILOIa3¥d 14305 _
| 43y VALNI "ZILNVYND _
I
| % L
I 1INN ta_m: ||
NOILVSNIdWOD | | -+
_ NOLLOW SINIWITA XVINAS [ONIQOO3A
“ = AdO¥.LN3 ||
_ LINN ONISS300¥d _
_ NOILD1a3¥d i _
_ ot _

¥300934a 03dIA

ALILN3

———
WvIylslig

(e F [a])

U.S. Patent Oct. 25, 2016 Sheet 7 of 7 US 9,479,779 B2

2
KOO

RECEIVE BITSTREAM OF ENCODED VIDEO DATA

l ' 202

SELECT SUB-BITSTREAM EXTRACTION MODE FROM PLURALITY
OF SUB-BITSTREAM EXTRACTION MODES

l s 204

EXTRACT FOR OUTPUT SUB-BITSTREAM FROM BITSTREAM
BASED ON SELECTED SUB-BITSTREAM EXTRACTION MODE

FIG. 7

US 9,479,779 B2

1
SUB-BITSTREAM EXTRACTION FOR
MULTIVIEW, THREE-DIMENSIONAL (3D)
AND SCALABLE MEDIA BITSTREAMS

This application claims the benefit of U.S. Provisional
Application No. 61/708,522 filed Oct. 1, 2012, the entire
content of which is incorporated by reference herein.

TECHNICAL FIELD

This disclosure generally relates to processing video data
and, more particularly, techniques for processing video data
based on one or more video coding standards.

BACKGROUND

Digital video capabilities can be incorporated into a wide
range of devices, including digital televisions, digital direct
broadcast systems, wireless broadcast systems, personal
digital assistants (PDAs), laptop or desktop computers,
tablet computers, e-book readers, digital cameras, digital
recording devices, digital media players, video gaming
devices, video game consoles, cellular or satellite radio
telephones, so-called “smart phones,” video teleconferenc-
ing devices, video streaming devices, transcoders, routers or
other network devices, and the like. Digital video devices
implement video compression techniques, such as those
described in the standards defined by MPEG-2, MPEG-4,
ITU-T H.263, ITU-T H.264/MPEG-4, Part 10, Advanced
Video Coding (AVC), the High Efficiency Video Coding
(HEVC) standard presently under development, proprietary
standards, open video compression formats such as VP8,
and extensions of such standards, techniques or formats. The
video devices may transmit, receive, encode, decode, and/or
store digital video information more efficiently by imple-
menting such video compression techniques.

Video compression techniques perform spatial (intra-
picture) prediction and/or temporal (inter-picture) prediction
to reduce or remove redundancy inherent in video
sequences. For block-based video coding, a video slice (i.e.,
a video frame or a portion of a video frame) may be
partitioned into video blocks, which may also be referred to
as treeblocks, coding units (CUs) and/or coding nodes.
Video blocks in an intra-coded (I) slice of a picture are
encoded using spatial prediction with respect to reference
samples in neighboring blocks in the same picture. Video
blocks in an inter-coded (P or B) slice of a picture may use
spatial prediction with respect to reference samples in neigh-
boring blocks in the same picture or temporal prediction
with respect to reference samples in other reference pictures.
Pictures may be referred to as frames, and reference pictures
may be referred to a reference frames.

Spatial or temporal prediction results in a predictive block
for a block to be coded. Residual data represents pixel
differences between the original block to be coded and the
predictive block. An inter-coded block is encoded according
to a motion vector that points to a block of reference samples
forming the predictive block, and the residual data indicat-
ing the difference between the coded block and the predic-
tive block. An intra-coded block is encoded according to an
intra-coding mode and the residual data. For further com-
pression, the residual data may be transformed from the
pixel domain to a transform domain, resulting in residual
transform coeflicients, which then may be quantized. The
quantized transform coefficients, initially arranged in a two-
dimensional array, may be scanned in order to produce a

10

15

20

25

30

35

40

45

50

55

60

65

2

one-dimensional vector of transform coefficients, and
entropy coding may be applied to achieve even more com-
pression.

SUMMARY

This disclosure describes techniques related to video
coding, and more particularly, this disclosure describes
utilizing one of a plurality of sub-bitstream extraction modes
to allow a device intermediate to a video encoder and a video
decoder (e.g., a network entity) to select the appropriate
extraction operation for purposes of sub-bitstream extrac-
tion. For instance, each sub-bitstream extraction mode may
define a particular manner in which the device extracts data
from a bitstream (e.g., coded pictures from views or layers)
so that the video decoder can reconstruct target output views
or target output layers. The extracted data from the bitstream
may form a sub-bitstream. In this way, the device may not
need to extract the sub-bitstream in a fixed, rigid manner,
and can adapt to particular conditions for outputting the data
for the target output views or target output layers.

In one example, the disclosure describes a method of
processing video data, the method comprising receiving a
bitstream of encoded video data, and selecting a sub-bit-
stream extraction mode from a plurality of sub-bitstream
extraction modes. Each of the sub-bitstream extraction
modes defines a manner in which to extract coded pictures
from views or layers from the bitstream to allow decoding
of'target output views or target output layers, and each coded
picture comprises one or more video coding layer network
abstraction layer (VCL NAL) units of a view or a layer
within an access unit. The method also includes extracting,
from the bitstream, a sub-bitstream in the manner defined by
the selected sub-bitstream extraction mode.

In one example, the disclosure describes a device for
processing video data, the device comprising one or more
processors configured to receive a bitstream of encoded
video data, and select a sub-bitstream extraction mode from
a plurality of sub-bitstream extraction modes. Each of the
sub-bitstream extraction modes defines a manner in which to
extract coded pictures from views or layers from the bit-
stream to allow decoding of target output views or target
output layers, and each coded picture comprises one or more
video coding layer network abstraction layer (VCL NAL)
units of a view or a layer within an access unit. The one or
more processors are also configured to extract, from the
bitstream, a sub-bitstream in the manner defined by the
selected sub-bitstream extraction mode.

In one example, the disclosure describes a computer-
readable storage medium having instructions stored thereon
that when executed by one or more processors of a device
for processing video data cause the one or more processors
to receive a bitstream of encoded video data, and select a
sub-bitstream extraction mode from a plurality of sub-
bitstream extraction modes. Each of the sub-bitstream
extraction modes defines a manner in which to extract coded
pictures from views or layers from the bitstream to allow
decoding of target output views or target output layers, and
each coded picture comprises one or more video coding
layer network abstraction layer (VCL NAL) units of a view
or a layer within an access unit. The instructions also cause
the one or more processors to extract, from the bitstream, a
sub-bitstream in the manner defined by the selected sub-
bitstream extraction mode.

In one example, the disclosure describes a device for
processing video data, the device comprising means for
receiving a bitstream of encoded video data, and means for

US 9,479,779 B2

3

selecting a sub-bitstream extraction mode from a plurality of
sub-bitstream extraction modes. Each of the sub-bitstream
extraction modes defines a manner in which to extract coded
pictures from views or layers from the bitstream to allow
decoding of target output views or target output layers, and
each coded picture comprises video coding layer network
abstraction layer (VCL NAL) units of a view or a layer
within an access unit. The device also includes means for
extracting, from the bitstream, a sub-bitstream in the manner
defined by the selected sub-bitstream extraction mode.

The details of one or more examples are set forth in the
accompanying drawings and the description below. Other
features, objects, and advantages will be apparent from the
description and drawings, and from the claims.

BRIEF DESCRIPTION OF DRAWINGS

FIG. 1 is a block diagram illustrating an example video
encoding and decoding system that may utilize the tech-
niques described in this disclosure.

FIG. 2 is a graphical diagram illustrating an example
encoding and decoding order, in accordance with one or
more examples described in this disclosure.

FIG. 3 is a conceptual diagram illustrating an example
prediction pattern.

FIG. 4 is a block diagram illustrating an example set of
devices that form part of a network.

FIG. 5 is a block diagram illustrating an example video
encoder that may implement the techniques described in this
disclosure.

FIG. 6 is a block diagram illustrating an example video
decoder that may implement the techniques described in this
disclosure.

FIG. 7 is a flowchart illustrating an example technique in
accordance with one or more examples described in this
disclosure.

DETAILED DESCRIPTION

In multiview video coding, there are multiple views that
each include multiple pictures. The term multiview video
coding is used generically to refer to video coding tech-
niques in which video data for multiple views is included in
a coded bitstream such a video coding techniques in accor-
dance with various multiview video coding standards as well
as techniques that do not necessarily rely upon a video
coding standard. The term multiview video coding may also
be used to refer to video coding techniques in which multiple
layers of video data are coded in a bitstream such as scalable
video coding techniques. Techniques for multiview video
coding may be controlled by various video coding standards,
and the techniques described in this disclosure may be
applicable to the various video coding standards, as well as
techniques that do not rely upon a video coding standard.

In some cases, although a video encoder encodes many
views or layers for a coded bitstream, a video decoder may
only need to decode a subset of the views or layers in the
coded bitstream. For example, for certain settings more
views may be needed than for other settings. For instance,
some devices may be capable of displaying many views, and
some devices may be capable of displaying fewer views.
Therefore, it may be beneficial to allow the devices to
retrieve as many views or layers that the device is capable
of decoding and displaying.

A view includes view components belonging to different
access units, the view components may be also called coded
pictures in this disclosure. A layer also includes coded

10

15

20

25

30

40

45

50

55

4

pictures belonging to different access units. Coded pictures
of all views or all layers belonging to the same access unit
have the same output time. In the context of 3D video
coding, each view may contain the texture part and depth
part, mainly texture view and depth view. A texture view
includes of coded texture pictures, also named as coded
pictures of the texture view and coded depth pictures, also
named as coded pictures of depth view. The coded texture
pictures are also referred to as texture view components and
the coded depth pictures are also referred to as depth view
components. In the techniques described in this disclosure,
each coded picture includes one or more video coding layer
(VCL) network abstraction layer (NAL) (i.e., VCL NAL)
units of a view or a layer within an access unit.

For some cases, a video decoder may decode a subset of
the views or layers, instead of all of the views and layers,
from the coded bitstream. For instance, bandwidth efficien-
cies can be gained by extracting and outputting coded
pictures from the views or layers that the video decoder
needs for decoding target output views or layers (e.g., those
views or layers that are to be displayed), rather than out-
putting all of the views and layers including views and layers
not needed for decoding the target output views or layers. To
allow the video decoder to decode only a subset of the views,
a network device (e.g., a device upstream from the device
that includes the video decoder) or the device that includes
the video decoder may extract the subset of views from the
coded bitstream, and only transmit the extracted views to a
device that includes the video decoder for decoding. This
extraction of the subset of views from the coded bitstream is
referred to as sub-bitstream extraction.

In multiview video coding, it may be possible to inter-
predict one coded picture of one view, from another picture
of another view. Such inter-prediction is referred to as
inter-view prediction. In some cases, coded pictures from
one of the views may be inter-predicted from pictures of a
view that is not to be displayed. For example, assume that a
display device (e.g., a mobile device or desktop) is to display
view 0 and view 1 (e.g., the texture view of view 0 and view
1). In this example, view 0 and view 1 may be referred to as
target output views (i.e., the views that are to be outputted
for display). However, it may be possible that coded pictures
(e.g., texture view components and depth view components)
from view 1 are inter-predicted from coded pictures (e.g.,
texture view components and depth view components) of
view 2. In this example, even though view 2 is not be
displayed, the video decoder may still need to receive the
video data associated with view 2 and decode such video
data so that the video decoder can properly decode the video
data of view 1.

For multiview video coding, in some cases, a view
component of a view may be represented by two compo-
nents: a texture view component and a depth view compo-
nent. The texture view component includes the actual video
content. The depth view component includes information
indicating the relative depths of the pixels or objects within
the video content.

For example, as described in more detail, in some
examples of the sub-bitstream extraction processes
described in this disclosure, when the sub-bitstream extrac-
tion process extracts coded pictures from the coded bit-
stream, the sub-bitstream extraction process may extract
both the texture view components and the depth view
components for decoding the target output views. In some
examples of the sub-bitstream extraction processes
described in this disclosure, when the sub-bitstream extrac-
tion process extracts coded pictures from the coded bit-

US 9,479,779 B2

5

stream, the sub-bitstream extraction process may extract the
texture view components, but not the depth view compo-
nents, or vice-versa for decoding the target output views. In
some examples of the sub-bitstream extraction processes
described in this disclosure, when the sub-bitstream extrac-
tion process extracts coded pictures from the coded bit-
stream, the sub-bitstream extraction process may extract
only the view components needed for decoding the target
output views. As described in more detail, the sub-bitstream
extraction process may be modal process in which a device
determines the manner in which to extract the sub-bitstream,
with the above description being a few examples of the
manner in which the device may extract the sub-bitstream.

There may be certain issues with the manner in which
sub-bitstream extraction is currently performed. For
example, there is no mechanism to adaptively choose the
extraction operation. Moreover, in some cases, a texture
view component of a target output view may be inter-view
predicted from the texture view component of a first non-
target output, reference view, but the depth view component
of the target output view may be predicted from a second
different reference view. In this case, some sub-bitstream
extraction techniques may still include the depth view
component of the first non-target output, reference view
although the depth view component of the first non-target
output, reference view is not needed for decoding the target
output view. The vice-versa is also possible as well (i.e.,
texture view components are not needed, but are included
with the depth view components anyway).

The techniques described in this disclosure are generally
related to an adaptive mechanism for selecting an appropri-
ate sub-bitstream extraction process. Also, it should be
understood that although the techniques are described with
respect to multiview video coding, the techniques are also
applicable to scalable video coding. In general, scalable
video coding includes coding one or more layers of video
data, each layer corresponding to various coding dimen-
sions. For instance, the layers may include one or more of a
spatial resolution layer, a chroma bit depth layer, a signal-
to-noise ratio (SNR) layer, or the like. Furthermore, various
views may be considered a layer of a view dimension. Thus,
although generally described with respect to views for
purposes of example, it should be understood that multiview
video coding represents an example of a layer. Thus, refer-
ences to a view may also be considered, more generally,
references to a layer.

In some examples, an external means (e.g., an application
processing interface (API) that takes an input from the end
user or a default configuration of the system and passes the
information to the device performing the sub-bitstream
extraction) may define a sub-bitstream extraction mode that
the device performing the sub-bitstream extraction imple-
ments. If no external means is available, then the device
performing the sub-bitstream extraction may implement a
default sub-bitstream extraction mode.

In this manner, the techniques allow for multi-mode
sub-bitstream extraction, whereby the external means is able
to define a sub-bitstream extraction mode from the plurality
of sub-bitstream extraction modes. In other words, in the
techniques described in this disclosure, the device perform-
ing the sub-bitstream extraction may be configurable (i.e.,
adaptable) with different mode types, and may then perform
sub-bitstream extraction based on the defined mode. In some
examples, it may be required that the output sub-bitstreams
for some bitstream extraction modes are conforming bit-
streams, while the output sub-bitstreams for some bitstream
extraction modes are not required to be conforming bit-

10

15

20

25

30

35

40

45

50

55

60

65

6

streams. This may result in a reduction in the complexity of
ensuring whether bitstream subsets are conforming.

In some examples, the device performing the extraction
may maintain two separate lists for texture views and depth
views of the views that are to be extracted for decoding the
output views. The first list may be for the texture views and
the second list may be for the depth views. In this way, if the
texture view of a non-target output view is needed, but the
depth view is not, as indicated by the first list and the second
list, then the device performing the extraction may remove
the depth view components from the bitstream. Similarly, if
the depth view of a non-target output view is needed, but the
texture view is not, as indicated by the first list and the
second list, then the device performing the extraction may
remove the texture view components from the bitstream.

FIG. 1 is a block diagram illustrating an example video
encoding and decoding system 10 that may utilize the
techniques described in this disclosure. As shown in FIG. 1,
system 10 includes a source device 12 that generates
encoded video data to be decoded at a later time by a
destination device 14. Source device 12 and destination
device 14 may comprise any of a wide range of devices,
including desktop computers, notebook (i.e., laptop) com-
puters, tablet computers, set-top boxes, telephone handsets
such as so-called “smart” phones, so-called “smart” pads,
televisions, cameras, display devices, digital media players,
video gaming consoles, video streaming device, or the like.
In some cases, source device 12 and destination device 14
may be equipped for wireless communication.

Destination device 14 may receive the encoded video data
to be decoded via a link 16. Link 16 may comprise any type
of medium or device capable of moving the encoded video
data from source device 12 to destination device 14. In one
example, link 16 may comprise a communication medium to
enable source device 12 to transmit encoded video data
directly to destination device 14 in real-time. The encoded
video data may be modulated according to a communication
standard, such as a wireless communication protocol, and
transmitted to destination device 14. The communication
medium may comprise any wireless or wired communica-
tion medium, such as a radio frequency (RF) spectrum or
one or more physical transmission lines. The communica-
tion medium may form part of a packet-based network, such
as a local area network, a wide-area network, or a global
network such as the Internet. The communication medium
may include routers, switches, base stations, or any other
equipment that may be useful to facilitate communication
from source device 12 to destination device 14.

Alternatively, encoded data may be output from output
interface 22 to a storage device 32. Similarly, encoded data
may be accessed from storage device 32 by input interface.
Storage device 32 may include any of a variety of distributed
or locally accessed data storage media such as a hard drive,
Blu-ray discs, DVDs, CD-ROMs, flash memory, volatile or
non-volatile memory, or any other suitable digital storage
media for storing encoded video data. In a further example,
storage device 32 may correspond to a file server or another
intermediate storage device that may hold the encoded video
generated by source device 12. Destination device 14 may
access stored video data from storage device 32 via stream-
ing or download. The file server may be any type of server
capable of storing encoded video data and transmitting that
encoded video data to the destination device 14. Example
file servers include a web server (e.g., for a website), an FTP
server, network attached storage (NAS) devices, or a local
disk drive. Destination device 14 may access the encoded
video data through any standard data connection, including

US 9,479,779 B2

7

an Internet connection. This may include a wireless channel
(e.g., a Wi-Fi connection), a wired connection (e.g., DSL,
cable modem, etc.), or a combination of both that is suitable
for accessing encoded video data stored on a file server. The
transmission of encoded video data from storage device 32
may be a streaming transmission, a download transmission,
or a combination of both.

The techniques of this disclosure are not necessarily
limited to wireless applications or settings. The techniques
may be applied to video coding in support of any of a variety
of multimedia applications, such as over-the-air television
broadcasts, cable television transmissions, satellite televi-
sion transmissions, streaming video transmissions, e.g., via
the Internet, encoding of digital video for storage on a data
storage medium, decoding of digital video stored on a data
storage medium, or other applications. In some examples,
system 10 may be configured to support one-way or two-
way video transmission to support applications such as
video streaming, video playback, video broadcasting, and/or
video telephony.

In some examples, a media aware network element
(MANE) (not shown) may reside along link 16. As described
in more detail, the disclosure describes sub-bitstream extrac-
tion processes. The MANE may be configured to implement
the sub-bitstream extraction process. In this manner, the
MANE may receive an encoded bitstream from source
device 12, extract parts of the bitstream (i.e., perform
sub-bitstream extraction), and output the extracted sub-
bitstream to destination device 14.

However, relying on the MANE to implement the sub-
bitstream extraction process is provided for purposes of
illustration only and should not be considered limiting. In
some examples, such as those where source device 12
transmits video data to destination device 14, source device
12 may be configured to implement the sub-bitstream
extraction processes described in this disclosure. It may be
possible for the sub-bitstream extraction processes to be
performed further downstream from source device 12 (e.g.,
via the MANE). In some examples, it may even be possible
for destination device 14 to implement the example sub-
bitstream extraction processes described in this disclosure.

In the example of FIG. 1, source device 12 includes a
video source 18, video encoder 20 and an output interface
22. In some cases, output interface 22 may include a
modulator/demodulator (modem) and/or a transmitter. In
source device 12, video source 18 may include a source such
as a video capture device, e.g., a video camera, a video
archive containing previously captured video, a video feed
interface to receive video from a video content provider,
and/or a computer graphics system for generating computer
graphics data as the source video, or a combination of such
sources. As one example, if video source 18 is a video
camera, source device 12 and destination device 14 may
form so-called camera phones or video phones. However,
the techniques described in this disclosure may be applicable
to video coding in general, and may be applied to wireless
and/or wired applications.

The captured, pre-captured, or computer-generated video
may be encoded by video encoder 20. The encoded video
data may be transmitted directly to destination device 14 via
output interface 22 of source device 12. The encoded video
data may also (or alternatively) be stored onto storage device
32 for later access by destination device 14 or other devices,
for decoding and/or playback.

Destination device 14 includes an input interface 28, a
video decoder 30, and a display device 31. In some cases,
input interface 28 may include a receiver and/or a modem.

10

15

20

25

30

35

40

45

50

55

60

65

8

Input interface 28 of destination device 14 receives the
encoded video data over link 16. The encoded video data
communicated over link 16, or provided on storage device
32, may include a variety of syntax elements generated by
video encoder 20 for use by a video decoder, such as video
decoder 30, in decoding the video data. Such syntax ele-
ments may be included with the encoded video data trans-
mitted on a communication medium, stored on a storage
medium, or stored a file server.

Display device 31 may be integrated with, or external to,
destination device 14. In some examples, destination device
14 may include an integrated display device and also be
configured to interface with an external display device. In
other examples, destination device 14 may be a display
device. In general, display device 31 displays the decoded
video data to a user, and may comprise any of a variety of
display devices such as a liquid crystal display (LCD), a
plasma display, an organic light emitting diode (OLED)
display, or another type of display device.

Video encoder 20 and video decoder 30 may operate
according to a video compression standard, such as the High
Efficiency Video Coding (HEVC) standard presently under
development, and may conform to the HEVC Test Model
(HM). A recent draft of the HEVC standard, referred to as
“HEVC Working Draft 8” or “WD8,” is described in docu-
ment JCTVC-H1003, Bross et al., “High efficiency video
coding (HEVC) text specification draft 8,” Joint Collabora-
tive Team on Video Coding (JCT-VC) of ITU-T SG16 WP3
and ISO/IEC JTC1/SC29/W@G11, 10th Meeting: Stockholm,
SE, July 11-20, 2012, which, as of Sep. 30, 2013, is
downloadable from http://phenix.int-evry.fr/jct/doc_en-
d_user/documents/10 Stockholm/wg11/JCTVC-J1003-
v8.zip, the entire content of which is incorporated herein by
reference.

Another recent draft of the HEVC standard, referred to as
“HEVC Working Draft 10” or “WD10,” is described in
document JCTVC-L1003v34, Bross et al., “High efficiency
video coding (HEVC) text specification draft 10 (for
FDIS & Last Call),” Joint Collaborative Team on Video
Coding (JCT-VC) of ITU-T SG16 WP3 and ISO/IEC JTC1/
SC29/WG11, 12th Meeting: Geneva, CH, 14-23 Jan. 2013,
which, as of Sep. 30, 2013, is downloadable from http://
phenix.int-evey.fr/jct/doc_end_user/documents/12 Geneva/
wgl1/JCTVC-L1003-v34.zip, the entire content of which is
incorporated herein by reference. Yet another draft of the
HEVC standard, is referred to herein as “WD10 revisions”
described in Bross et al., “Editors’ proposed corrections to
HEVC version 1,” Joint Collaborative Team on Video Cod-
ing (JCT-VC) of ITU-T SG16 WP3 and ISO/IEC JTC1/
SC29/WG11, 13” Meeting, Incheon, KR, April 2013, which
as of Sep. 30, 2013, is available from http://phenix.int-
evry.fr/jct/doc_end_user/documents/13_Incheon/wgl1/
JCTVC-M0432-v3.zip, the entire content of which is incor-
porated herein by reference.

Alternatively, video encoder 20 and video decoder 30 may
operate according to other proprietary or industry standards,
such as the ITU-T H.261, ISO/IEC MPEG-1 Visual, ITU-T
H.262 or ISO/IEC MPEG-2 Visual, ITU-T H.263, ISO/IEC
MPEG-4 Visual and ITU-T H.264 (also known as ISO/IEC
MPEG-4 AVC), including its Scalable Video Coding (SVC)
and Multiview Video Coding (MVC) extensions. A joint
draft of MVC is described in “Advanced video coding for
generic audiovisual services,” ITU-T Recommendation
H.264, March 2010, the entire content of which is incorpo-
rated herein by reference. Another joint draft of the MVC is
described in “Advanced video coding for generic audiovi-

US 9,479,779 B2

9

sual services,” ITU-T Recommendation H.264, June 2011,
the entire content of which is incorporated herein by refer-
ence.

In addition, there is a new video coding standard, as an
extension of the MVC standard, namely “MVC+D”, as
described in “MVC Extension for Inclusion of Depth Maps
Draft Text 4,” JCT3V-A1001, Joint Collaborative Team on
3D Video Coding Extension Development of ITU-T SG 16
WP 3 and ISO/AIEC JTC 1/SC 29/WG 11, 1st Meeting:
Stockholm, SE, 16-20 Jul. 2012. The entire content of
“MVC Extension for Inclusion of Depth Maps Draft Text 4,”
JCT3V-A1001 is incorporated herein by reference. Besides
the “MVC+D” standard, there are ongoing standard activi-
ties for so called 3D-AVC standard, MV-HEVC standard
and potentially 3D-HEVC standard as well as the scalable
codec of HEVC.

The latest 3D-AVC working draft is available at “3D-AVC
Draft Text 37, JCT3V-A1002, Joint Collaborative Team on
3D Video Coding Extension Development of ITU-T SG 16
WP 3 and ISO/AIEC JTC 1/SC 29/WG 11, 1st Meeting:
Stockholm, SE, 16-20 Jul. 2012. The entire content of
“3D-AVC Draft Text 37, JCT3V-A1002 is incorporated
herein by reference.

The latest MV-HEVC working draft is available at “MV-
HEVC Working Draft 1,” JCT3V-A1004, Joint Collabora-
tive Team on 3D Video Coding Extension Development of
ITU-T SG 16 WP 3 and ISO/IEC JTC 1/SC 29/WG 11, Ist
Meeting: Stockholm, SE, 16-20 Jul. 2012. The entire content
of “MV-HEVC Working Draft 1,” JCT3V-A1004 is incor-
porated herein by reference.

The latest 3D-HEVC test model text is available at
“3D-HEVC Test Model 1,” JCT3V-A1005, Joint Collabora-
tive Team on 3D Video Coding Extension Development of
ITU-T SG 16 WP 3 and ISO/IEC JTC 1/SC 29/WG 11, Ist
Meeting: Stockholm, SE, 16-20 Jul. 2012. The entire content
of “3D-HEVC Test Model 1,” JCT3V-A1005 is incorporated
herein by reference.

The techniques of this disclosure, however, are not limited
to any particular coding standard. The techniques may be
applicable to examples of video encoder 20 and video
decoder 30 that are not based on a video coding standard.
Other examples of video compression standards include
MPEG-2 and ITU-T H.263, as well as open formats such as
VPS.

Although not shown in FIG. 1, in some aspects, video
encoder 20 and video decoder 30 may each be integrated
with an audio encoder and decoder, and may include appro-
priate MUX-DEMUX units, or other hardware and software,
to handle encoding of both audio and video in a common
data stream or separate data streams. If applicable, in some
examples, MUX-DEMUX units may conform to the ITU
H.223 multiplexer protocol, or other protocols such as the
user datagram protocol (UDP).

Video encoder 20 and video decoder 30 each may be
implemented as any of a variety of suitable encoder cir-
cuitry, such as one or more microprocessors, digital signal
processors (DSPs), application specific integrated circuits
(ASICs), field programmable gate arrays (FPGAs), discrete
logic, software, hardware, firmware or any combinations
thereof. When the techniques are implemented partially in
software, a device may store instructions for the software in
a suitable, non-transitory computer-readable medium and
execute the instructions in hardware using one or more
processors to perform the techniques of this disclosure.

Each of video encoder 20 and video decoder 30 may be
included in one or more encoders or decoders, either of
which may be integrated as part of a combined encoder/

10

15

20

25

30

35

40

45

50

55

60

65

10

decoder (CODEC) in a respective device. For example,
video decoder 30 may be formed within a microcontroller or
an integrated circuit (IC). In these examples, the term
“device” may refer to the microcontroller or IC. As another
example, video decoder 30 may be formed within a wireless
communication device (e.g., the microcontroller or IC may
be formed within the wireless communication device). In
these examples, the term “device” may refer to the wireless
communication device. In this sense, the term device may be
used as any component that includes video decoder 30.
Similarly, in some examples, a device may include video
encoder 20.

Therefore, when this disclosure describes video decoding,
such video decoding may be performed by a device that
includes one of a microcontroller that includes video
decoder 30, an IC that includes video decoder 30, and a
wireless communication device (e.g., destination device 14)
that includes video decoder 30. When this disclosure
described video encoding, such video encoding may be
performed by a device that includes one of a microcontroller
that includes video encoder 20, an IC that includes video
encoder 20, a wireless communication device (e.g., source
device 12) that includes video encoder 20.

To assist with understanding video coding, the following
provides a description of video coding as part of the HEVC
standard. The HEVC standardization efforts are based on an
evolving model of a video coding device referred to as the
HEVC Test Model (HM). The HM presumes several addi-
tional capabilities of video coding devices relative to exist-
ing devices according to, for instance, ITU-T H.264/AVC.

In general, the working model of the HM describes that a
video frame or picture may be divided into a sequence of
treeblocks or largest coding units (LCU) that include both
luma and chroma samples. A treeblock may serve some
similar purposes as a macroblock of the H.264 standard,
although a treeblock has many differences relative to a
macroblock. A slice includes a number of consecutive tree-
blocks in coding order. A video frame or picture may be
partitioned into one or more slices. Each treeblock may be
split into coding units (CUs) according to a quadtree. For
example, a treeblock, as a root node of the quadtree, may be
split into four child nodes, and each child node may in turn
be a parent node and be split into another four child nodes.
A final, unsplit child node, as a leaf node of the quadtree,
comprises a coding node (i.e., a coded video block). Syntax
data associated with a coded bitstream may define a maxi-
mum number of times a treeblock may be split, and may also
define a minimum size of the coding nodes.

A CU includes a coding node and prediction units (PUs)
and transform units (TUs) associated with the coding node.
A size of the CU corresponds to a size of the coding node
and must be square in shape. The size of the CU may range
from 8x8 pixels up to the size of the treeblock with a
maximum of 64x64 pixels or greater. Each CU may contain
one or more PUs and one or more TUs. Syntax data
associated with a CU may describe, for example, partition-
ing of the CU into one or more PUs. Partitioning modes may
differ between whether the CU is skip or direct mode
encoded, intra-prediction mode encoded, or inter-prediction
mode encoded. PUs may be partitioned to be non-square in
shape. Syntax data associated with a CU may also describe,
for example, partitioning of the CU into one or more TUs
according to a quadtree. A TU may be square or non-square
in shape.

The HEVC standard allows for transformations according
to TUs, which may be different for different CUs. The TUs
are typically sized based on the size of PUs within a given

US 9,479,779 B2

11

CU defined for a partitioned LCU, although this may not
always be the case. The TUs are typically the same size or
smaller than the PUs. In some examples, residual samples
corresponding to a CU may be subdivided into smaller units
using a quadtree structure known as “residual quad tree”
(RQT). The leaf nodes of the RQT may be referred to as
transform units (TUs). Pixel difference values associated
with the TUs may be transformed to produce transform
coeflicients, which may be quantized.

In general, a PU includes data related to the prediction
process. For example, when the PU is intra-mode encoded
(i.e., intra-prediction encoded), the PU may include data
describing an intra-prediction mode for the PU. As another
example, when the PU is inter-mode encoded (i.e., inter-
prediction encoded), the PU may include data defining a
motion vector for the PU. The data defining the motion
vector for a PU may describe, for example, a horizontal
component of the motion vector, a vertical component of the
motion vector, a resolution for the motion vector (e.g.,
one-quarter pixel precision or one-eighth pixel precision), a
reference picture to which the motion vector points, and/or
a reference picture list (e.g., RefPicList0 or RefPicListl) for
the motion vector.

In general, a TU is used for the transform and quantization
processes. A given CU having one or more PUs may also
include one or more transform units (TUs). Following
prediction, video encoder 20 may calculate residual values
corresponding to the PU. The residual values comprise pixel
difference values that may be transformed into transform
coeflicients, quantized, and scanned using the TUs to pro-
duce serialized transform coefficients for entropy coding.
This disclosure typically uses the term “video block™ to refer
to a coding node of a CU. In some specific cases, this
disclosure may also use the term “video block™ to refer to a
treeblock (i.e., LCU, or a CU, which includes a coding node
and PUs and TUs).

A video sequence typically includes a series of video
frames or pictures. A group of pictures (GOP) generally
comprises a series of one or more of the video pictures. A
GOP may include syntax data in a header of the GOP, a
header of one or more of the pictures, or elsewhere, that
describes a number of pictures included in the GOP. Each
slice of a picture may include slice syntax data that describes
an encoding mode for the respective slice. Video encoder 20
typically operates on video blocks within individual video
slices in order to encode the video data. A video block may
correspond to a coding node within a CU. The video blocks
may have fixed or varying sizes, and may differ in size
according to a specified coding standard.

As an example, the HM supports prediction in various PU
sizes. Assuming that the size of a particular CU is 2Nx2N,
the HM supports intra-prediction in PU sizes of 2Nx2N or
NxN, and inter-prediction in symmetric PU sizes of 2Nx2N,
2NxN, Nx2N, or NxN. The HM also supports asymmetric
partitioning for inter-prediction in PU sizes of 2NxnU,
2NxnD, n[L.x2N, and nRx2N. In asymmetric partitioning,
one direction of a CU is not partitioned, while the other
direction is partitioned into 25% and 75%. The portion of the
CU corresponding to the 25% partition is indicated by an “n”
followed by an indication of “Up”, “Down,” “Left,” or
“Right.” Thus, for example, “2NxnU” refers to a 2Nx2N CU
that is partitioned horizontally with a 2Nx0.5N PU on top
and a 2Nx1.5N PU on bottom.

In this disclosure, “NxN” and “N by N” may be used
interchangeably to refer to the pixel dimensions of a video
block in terms of vertical and horizontal dimensions, e.g.,
16x16 pixels or 16 by 16 pixels. In general, a 16x16 block

10

15

20

25

30

35

40

45

50

55

60

65

12

will have 16 pixels in a vertical direction (y=16) and 16
pixels in a horizontal direction (x=16). Likewise, an NxN
block generally has N pixels in a vertical direction and N
pixels in a horizontal direction, where N represents a non-
negative integer value. The pixels in a block may be
arranged in rows and columns. Moreover, blocks need not
necessarily have the same number of pixels in the horizontal
direction as in the vertical direction. For example, blocks
may comprise NxM pixels, where M is not necessarily equal
to N.

Following intra-predictive or inter-predictive coding (i.e.,
intra-prediction encoding or inter-prediction encoding)
using the PUs of a CU, video encoder 20 may calculate
residual data for the TUs of the CU. The PUs may comprise
pixel data in the spatial domain (also referred to as the pixel
domain) and the TUs may comprise coefficients in the
transform domain following application of a transform (e.g.,
a discrete cosine transform (DCT), an integer transform, a
wavelet transform, or a conceptually similar transform to
residual video data). The residual data may correspond to
pixel differences between pixels of the unencoded picture
and prediction values corresponding to the PUs. Video
encoder 20 may form the TUs including the residual data for
the CU, and then transform the TUs to produce transform
coeflicients for the CU.

Following any transforms to produce transform coeffi-
cients, video encoder 20 may perform quantization of the
transform coefficients. Quantization generally refers to a
process in which transform coefficients are quantized to
possibly reduce the amount of data used to represent the
coeflicients, providing further compression. The quantiza-
tion process may reduce the bit depth associated with some
or all of the coefficients. For example, an n-bit value may be
rounded down to an m-bit value during quantization, where
n is greater than m.

In some examples, video encoder 20 may utilize a pre-
defined scan order to scan the quantized transform coeffi-
cients to produce a serialized vector that can be entropy
encoded. In some examples, video encoder 20 may perform
an adaptive scan or may select a scan from a plurality of
possible scans. After scanning the quantized transform coef-
ficients to form a one-dimensional vector, video encoder 20
may entropy encode the one-dimensional vector (e.g.,
according to context adaptive variable length coding
(CAVLC), context adaptive binary arithmetic coding (CA-
BAC), syntax-based context-adaptive binary arithmetic cod-
ing (SBAC), Probability Interval Partitioning Entropy
(PIPE) coding or another entropy encoding methodology).
Video encoder 20 may also entropy encode syntax elements
associated with the encoded video data for use by video
decoder 30 in decoding the video data.

To perform CABAC, video encoder 20 may assign a
context within a context model to a symbol to be transmit-
ted. The context may relate to, for example, whether neigh-
boring values of the symbol are non-zero or not. To perform
CAVLC, video encoder 20 may select a variable length code
for a symbol to be transmitted. Codewords in VL.C may be
constructed such that relatively shorter codes correspond to
more probable symbols, while longer codes correspond to
less probable symbols. In this way, the use of VLC may
achieve a bit savings over, for example, using equal-length
codewords for each symbol to be transmitted. The probabil-
ity determination may be based on a context assigned to the
symbol.

This disclosure describes various methods for sub-bit-
stream extraction for multiview bitstreams, three-dimen-
sional (3D) bitstreams, scalable media bitstreams, and other

US 9,479,779 B2

13

types of bitstream with multiple layers, such as multiple
views. The techniques of this disclosure may also be appli-
cable to multiview bitstreams, three-dimensional (3D) bit-
streams and other types of bitstreams with multiple layers or
views.

In this disclosure, the term multiview video coding is used
to generically refer to techniques in which multiple different
views are coded For example, there are different examples of
video coding standards that define the manner in which
multiple different views are coded in a bitstream. As
described above, the examples of such video coding stan-
dards include: the multiview video coding (MVC) extension
to the H.264/AVC video coding standard, MVC plus depth
view components (MVC+D), 3D-AVC, multiview HEVC
(MV-HEVC), and 3D-HEVC. The sub-bitstream extraction
techniques described in this disclosure may be applicable to
all of these video coding standards, as well as video coding
techniques that do not rely upon a video coding standard.
Moreover, the sub-bitstream extraction techniques described
in this disclosure may also be applicable to scalable video
coding (SVC), where there is only one view but multiple
enhancement layers that can be selectively used to encode
and decode the pictures. Again, though, multiple views may
be considered a type of layer, and thus, the techniques of this
disclosure may generally be applicable to any multi-layer
coding techniques, where a view represents one example of
a layer.

To avoid confusion, this disclosure uses the term “mul-
tiview video coding” to refer generically to all the various
video coding techniques that rely on multiple views for
encoding and decoding. As needed, this disclosure makes
specific reference to specific video coding standards. Also,
the techniques are described with respect to multiview video
coding; however, the techniques are not so limited. The
techniques described in this disclosure may also be appli-
cable to scalable video coding techniques.

To assist with understanding, the following provides a
brief description of the different multiview video coding
standards. Such disclosure is meant to provide context for
the sub-bitstream extraction techniques described in this
disclosure, as well as assist with general understanding of
multiview video coding techniques. The following disclo-
sure describes multiview video coding (MVC), which is an
extension of H.264/AVC. When this disclosure uses the
acronym MVC, this disclosure is referring specifically to the
MVC extension of H.264/AVC. When “multiview video
coding” is written out, it is used generically to refer to
various coding techniques for multiview video.

FIG. 2 is a graphical diagram illustrating an example
encoding and decoding order, in accordance with one or
more examples described in this disclosure. For example,
the decoding order arrangement illustrated in FIG. 2 is
referred to as time-first coding. In FIG. 2, SO-S7 each refers
to different views of multiview video. TO-T8 each represents
one output time instance. In FIG. 2, each of the views
includes sets of pictures. For example, view SO includes set
of coded pictures 0, 8, 16, 24, 32, 40, 48, 56, and 64, view
S1 includes set of coded pictures 1, 9, 17, 25, 33, 41, 49, 57,
and 65, and so forth.

It should be understood that the decoding order illustrated
in FIG. 2 may not represent the output or display order. For
example, a coded picture that is to be displayed or outputted
later than another coded picture may be decoded earlier than
the other picture. A picture order count (POC) value of a
picture indicates a display order or an output order of the
picture. For instance, a picture with a lower POC value is
outputted or displayed earlier than a picture with a higher

10

15

20

25

30

35

40

45

50

55

60

65

14

POC value. However, the picture with higher POC value
may be decoded earlier than the picture with the lower POC
value, even though the picture with the higher POC value is
displayed or outputted later than the picture with the lower
POC value.

An access unit may include the coded pictures of all views
for one output time instance. For example, a first access unit
includes all of the views SO-S7 for time instance TO (i.e.,
coded pictures 0-7), a second access unit includes all of the
views S0-S7 for time instance T1 (i.e., coded pictures 8-15),
and so forth. In these examples, coded pictures 0-7 are at the
a same time instance (i.e., time instance T0), coded pictures
8-15 are at a same time instance (i.e., time instance T1), and
so forth.

In the techniques described in this disclosure, the device
that performs the sub-bitstream extraction may extract coded
pictures from the views or layers based on a selected manner
in which to extract the coded pictures. For example, the
device that performs the sub-bitstream extraction may
extract coded pictures from views S0-S3 and output only
those coded pictures, rather than outputting coded pictures
from all views SO-S7. Such sub-bitstream extraction may
promote bandwidth efficiency since destination device 14
may not be configured to display all views S0-S7 and
outputting only the views that are needed to decode the
views that are to be displayed may reduce the amount of data
that needs to be outputted in the bitstream.

As used in this disclosure, the term “coded picture” is
used to refer to a view component, a texture view compo-
nent, or a depth view component. For example, each access
unit may include one or more video coding layer (VCL)
network abstraction layer (NAL) (i.e., VCL. NAL) units.
Each coded picture may include one or more VCL NAL
units of a view or a layer within an access unit. In this
manner, the techniques may extract coded pictures form
views or layers from the bitstream to allow decoding of
target output view or target output layers, wherein each
coded picture comprises one or more VCL NAL units of a
view or a layer within an access unit.

FIG. 3 is a conceptual diagram illustrating an example
prediction pattern. In the example of FIG. 3, eight views
(having view IDs “S0” through “S7”) are illustrated, and
twelve temporal locations (“T0” through “T11”) are illus-
trated for each view. That is, each row in FIG. 3 corresponds
to a view, while each column indicates a temporal location.
In the example of FIG. 3, capital “B” and lowercase “b” are
used to indicate different hierarchical relationships between
pictures, rather than different coding methodologies. In
general, capital “B” pictures are relatively higher in the
prediction hierarchy than lowercase “b” frames.

A typical MVC prediction (including both inter-picture
prediction within each view and inter-view prediction) struc-
ture for multi-view video coding is shown in FIG. 3, where
predictions are indicated by arrows, the pointed—to object
using the point—from object for prediction reference. FIG.
3 may be an example of an MVC temporal and inter-view
prediction structure.

In MVC, the inter-view prediction is supported by dis-
parity motion compensation, which uses the syntax of the
H.264/AVC motion compensation, but allows a picture in a
different view to be used as a reference picture. Coding of
two views could be supported also by MVC, and one of the
advantages of MVC is that an MVC encoder could take
more than two views as a 3D video input and an MVC
decoder can decode such a multiview representation. So any
renderer with MVC decoder may expect 3D video contents
with more than two views.

US 9,479,779 B2

15

In FIG. 3, view SO may be considered as a base view, and
views S1-S7 may be considered as dependent views. A base
view includes coded pictures that are not inter-view pre-
dicted. A coded picture in a base view can be inter-predicted
with respect to other coded pictures in the same view. For
instance, none of the coded pictures in view SO can be
inter-predicted with respect to a coded picture in any of
views S1-S7, but some of the coded pictures in view SO can
be inter-predicted with respect to other coded pictures in
view SO.

A dependent view includes coded pictures that are inter-
view predicted. For example, each one of views S1-S7
includes at least one coded picture that is inter-predicted
with respect to a coded picture in another view. Coded
pictures in a dependent view may be inter-predicted with
respect to coded pictures in the base view, or may be
inter-predicted with respect to coded pictures in other depen-
dent views.

A video stream that includes both a base view and one or
more dependent views may be decodable by different types
of video decoders. For example, one basic type of video
decoder may be configured to decode only the base view. In
addition, another type of video decoder may be configured
to decode each of views S0-S7. A decoder that is configured
to decode both the base view and the dependent views may
be referred to as a decoder that supports multiview coding.

Pictures in FIG. 3 are indicated at the intersection of each
row and each column in FIG. 3. The H.264/AVC standard
with multiview coding extensions may use the term frame to
represent a portion of the video, while HEVC standard may
use the term picture to represent a portion of the video. This
disclosure uses the term picture and frame interchangeably.

The coded pictures in FIG. 3 are illustrated using a shaded
block including a letter, designating whether the correspond-
ing picture is intra-coded (that is, an I-picture), inter-coded
in one direction (that is, as a P-picture), or inter-coded in
multiple directions (that is, as a B-picture). In general,
predictions are indicated by arrows, where the pointed—to
pictures use the pointed—from picture for prediction refer-
ence. For example, the P-picture of view S2 at temporal
location TO is predicted from the I-picture of view SO at
temporal location TO.

As with single view video coding, coded pictures of a
multiview video coding video sequence may be predictively
encoded with respect to pictures at different temporal loca-
tions. For example, the B-picture of view SO at temporal
location T1 has an arrow pointed to it from the I-picture of
view S0 at temporal location T0, indicating that the b-picture
is predicted from the I-picture. Additionally, however, in the
context of multiview video encoding, pictures may be inter-
view predicted. That is, a coded picture can use the coded
pictures in other views for reference. In multiview coding,
for example, inter-view prediction is realized as if the coded
picture in another view is an inter-prediction reference. The
potential inter-view references are signaled in the Sequence
Parameter Set (SPS) MVC extension and can be modified by
the reference picture list construction process, which enables
flexible ordering of the inter-prediction or inter-view pre-
diction references.

FIG. 3 provides various examples of inter-view predic-
tion. Coded pictures of view S1, in the example of FIG. 3,
are illustrated as being predicted from coded pictures at
different temporal locations of view S1, as well as inter-view
predicted from coded pictures of views SO and S2 at the
same temporal locations. For example, the B-picture of view
S1 at temporal location T1 is predicted from each of the

10

20

25

30

35

40

45

55

60

16

B-pictures of view S1 at temporal locations TO and T2, as
well as the B-pictures of views SO and S2 at temporal
location T1.

For inter-prediction (i.e., inter-view prediction or predic-
tion within the same view), video encoder 20 and video
decoder 30 may each construct one or two reference picture
lists (e.g., RefPicList0 and RefPicListl). In inter-view pre-
diction, video encoder 20 and video decoder 30 may include
a coded picture from a different view from the coded picture
being inter-predicted in one or both of the reference picture
lists as long as the picture is in the same time instance as the
current picture. Video encoder 20 and video decoder 30 may
include the inter-view prediction reference picture (e.g.,
coded picture from the different view) at any position within
the reference picture list(s) similar to the manner in which
video encoder 20 and video decoder 30 include a reference
picture from the same view in the reference picture list(s).

FIG. 3 also illustrates variations in the prediction hierar-
chy using different levels of shading, where a greater amount
of'shading (that is, relatively darker) frames are higher in the
prediction hierarchy than those frames having less shading
(that is, relatively lighter). For example, all I-pictures in
FIG. 3 are illustrated with full shading, while P-pictures
have a somewhat lighter shading, and B-pictures (and low-
ercase b-pictures) have various levels of shading relative to
each other, but always lighter than the shading of the
P-pictures and the I-pictures.

In general, the prediction hierarchy may be related to view
order indexes, in that coded pictures relatively higher in the
prediction hierarchy should be decoded before decoding
coded pictures that are relatively lower in the hierarchy.
Those coded pictures relatively higher in the hierarchy can
be used as reference pictures during decoding of the coded
pictures relatively lower in the hierarchy. A view order index
is an index that indicates the decoding order of view
components in an access unit. The view order indices are
implied in the sequence parameter set (SPS) MVC exten-
sion, as specified in Annex H of H.264/AVC (the MVC
amendment). In the SPS, for each index i, the corresponding
view_id is signaled. The decoding of the view components
may follow the ascending order of the view order index. If
all the views are presented, then the view order indexes are
in a consecutive order from O to num_views_minus_1.

In this manner, coded pictures used as reference pictures
are decoded before coded pictures that depend on the
reference pictures. A view order index is an index that
indicates the decoding order of view components in an
access unit. For each view order index i, the corresponding
view_id is signaled. The decoding of the view components
follows the ascending order of the view order indexes. If all
the views are presented, then the set of view order indexes
may comprise a consecutively ordered set from zero to one
less than the full number of views.

For certain coded pictures at equal levels of the hierarchy,
the decoding order may not matter relative to each other. For
example, the I-picture of view SO at temporal location TO
may be used as a reference picture for the P-picture of view
S2 at temporal location TO, which, in turn, may be used as
a reference picture for the P-picture of view S4 at temporal
location TO. Accordingly, the I-picture of view SO at tem-
poral location TO should be decoded before the P-picture of
view S2 at temporal location TO, which in turn, should be
decoded before the P-picture of view S4 at temporal location
TO. However, between views S1 and S3, a decoding order
does not matter, because views S1 and S3 do not rely on each
other for prediction. Instead views S1 and S3 are predicted
only from other views that are higher in the prediction

US 9,479,779 B2

17

hierarchy. Moreover, view S1 may be decoded before view
S4, so long as view S1 is decoded after views SO and S2.

In this manner, a hierarchical ordering may be used to
describe views SO through S7. In this disclosure, the nota-
tion “SA>SB” means that view SA should be decoded
before view SB. Using this notation, SO>S2>84>S6>S7, in
the example of FIG. 3. Also, with respect to the example of
FIG. 3, S0>S1, S2>S1, S2>83, S4>83, S4>S5, and S6>S5.
Any decoding order for the views that does not violate this
hierarchical ordering is possible. Accordingly, many differ-
ent decoding orders are possible, with limitations based on
the hierarchical ordering.

As described above, the references in the other views that
may be used to inter-view predict the current coded picture
are referred to as inter-view references or inter-view refer-
ence pictures, and the SPS MVC extension may be modified
by the reference picture list construction. The following
Table 1, which is a syntax table, illustrates the syntax of the
SPS MVC extension.

TABLE 1

10

15

18

syntax element) and a three-byte MVC NAL unit header
extension if the NAL unit type is a prefix NAL unit or a
MVC video coding layer (VCL) NAL unit. In some
examples, the prefix NAL unit in MVC may contain only a
NAL unit header and its MVC NAL unit header extension.
The NAL unit header extension may include the following
syntax elements: nor_idr_flag, priority_id, view_id, tempo-
ral_id, anchor_pic_flag, and inter_view_{flag.

The nor_idr_flag syntax element may indicate whether the
NAL unit belongs to an instantaneous decoding refresh
(IDR) access unit that can be used as a closed-group of
picture (GOP) random access point. The priority_id syntax
element may be used for simple, one-dimensional adapta-
tion. The view_id syntax element may indicate the view
identifier of the current view. The temporal_id syntax ele-
ment may indicate the temporal identification value or
temporal level of the current NAL unit. The anchor_pic_flag
syntax element may indicate whether the NAL unit belongs
to an anchor picture that be used as an open-GOP random

seq__parameter__set__mvc_ extension() {

C Descriptor

num__views__minus1 0 ue(v)
for(i=0; i <= num_ views_minusl; i++)
view_id[i] 0 ue(v)
for(i=1; i <= num_ views_minusl; i++) {
num__anchor__refs_10[i] 0 ue(v)
for(j = 0; j < num__anchor_refs_l0[i]; j++)
anchor_ref 10[i][]] 0 ue(v)
num__anchor_ refs_ 1] i] 0 ue(v)
for(j = 0; j <num__anchor_refs_I1[i]; j++)
anchor_ref 11[i][]] 0 ue(v)
)
for(i=1; i <= num_views_minusl; i++) {
num__non_ anchor_refs 10[i] 0 ue(v)
for(j = 0; j < num_ non_ anchor_refs_ 10[i]; j++)
non_anchor_ref 10[1][j] 0 ue(v)
num__non_ anchor_refs [1[1i] 0 ue(v)
for(j = 0; j < num_ non_anchor_refs_ I1[1]; j++)
non_anchor_ref 1171][] 0 ue(v)
num__level values_ signalled_ minusl 0 ue(v)
for(i=0;i<=num_level values_signalled_minusl; i++) {
level_ide[1] 0 u(®)
num__applicable_ops__minus1[i] 0 ue(v)
for(j = 0; j <= num__applicable_ops_minus1[i]; j++) {
applicable__op_ temporal_id[i][]] 0 u@3)
applicable__op_ num_ target_ views_minusl[i][]] 0 ue(v)
for(k = 0; k <= applicable__op_num_ target views_minusl[i][]]; k++)
applicable__op_ target_ view_id[i][j][k] 0 ue(v)
applicable__op_ num_ views_minusl[i][]] 0 ue(v)

In the SPS MVC extension, for each view, the number of
views that can be used to form reference picture list O
(RefPicList0) and reference picture list 1 (RefPicListl) are
signaled. Prediction relationship for an anchor picture, as
signaled in the SPS MVC extension may be different from
the prediction relationship for a non-anchor picture (signaled
in the SPS MVC extension) of the same view.

In video coding, including multiview coding, video
encoder 20 may encapsulate the video data in network
abstraction layer (NAL) units, and video decoder 30 may
decode the NAL units to decode the video data. For
example, video encoder 20 may encapsulate a coded picture
in one or more VCL NAL units, and video decoder 30
decode the one or more VCL NAL units to decode the coded
picture. An MVC NAL unit includes a one-byte NAL unit
header (including the NAL unit type and the nal_ref idc

55

60

65

access point. The inter_view_flag syntax element may indi-
cate whether the view component is used for inter-view
prediction for NAL units in other views.

The previous described the MVC extension. The follow-
ing describes some additional video coding standards.

For example, another video coding standard may be
MVC+D, where the “D” refers to depth. In MVC, each view
includes a plurality of view components (each being an
example of a coded picture). MVC+D includes a depth
component. For instance, in MVC+D each view may be
considered as including a texture view and a depth view. The
texture view includes texture view components, and the
depth view includes depth view components. In other words,
a view includes view components, and a view component
includes a texture view component (one example of a coded
picture) and a depth view component (another example of a

US 9,479,779 B2

19

coded picture). In this way, there is a texture view and a
depth view for each view and a texture view component and
a depth view component for each view component of a view.
In other words, the texture view components of a view form
the texture view of the view, and the depth view components
of a view form the depth view of the view.

For every texture view component there may be a corre-
sponding depth view component, and, in this sense, a texture
view component may correspond to a depth view compo-
nent, and vice-versa. A texture view component and a depth
view component that correspond may be considered to be
part of a same view component of a single access unit.

The texture view component of MVC+D includes the
actual image content that is displayed. For example, the
texture view component may include luma (Y) and chroma
(Cb and Cr) components. The depth view component may
indicate relative depths of the pixels in its corresponding
texture view component. As one example, the depth view
component may be similar to a gray scale image that
includes only luma values. In other words, the depth view
component may not convey any image content, but rather
provide a measure of the relative depths of the pixels in the
texture view component.

For example, a pixel value corresponding to a purely
white pixel in the depth view component may indicate that
its corresponding pixel or pixels in the corresponding texture
view component is closer from the perspective of the viewer,
and a pixel value corresponding to a purely black pixel in the
depth view component may indicate that its corresponding
pixel or pixels in the corresponding texture view component
is further away from the perspective of the viewer. The pixel
values corresponding to the various shades of gray in
between black and white indicate different depth levels. For
instance, a very gray pixel in the depth view component
indicates that its corresponding pixel in the texture view
component is further away than a slightly gray pixel in the
depth view component. Because only one pixel value,
similar to gray scale, is needed to identify the depth of
pixels, the depth view component may include only one
pixel value. Thus, values analogous to chroma components
are not needed.

The depth view component using only luma values (e.g.,
intensity values) to identify depth is provided for illustration
purposes and should not be considered limiting. In some
examples, any technique may be utilized to indicate relative
depths of the pixels in the texture view component.

In MVC+D, the texture view components and the corre-
sponding depth view components have no dependency to
each other in MVC+D. In some examples, for a given 3D
video operation point, the target output views may depend
on different numbers of texture views and depth views for
coding (e.g., encoding or decoding). Operation point and
target output views are described in more detail below.

Another video coding standard is the 3D-AVC standard.
The 3D-AVC codec may be compatible only to H.264/AVC
but not MVC. New coding tools are needed for this standard.
Also, there are dependency between texture and depth of the
same view (i.e., a texture view component and its corre-
sponding depth view component may be required to be
inter-view predicted with respect to the same views).

In High Efficiency Video Coding (HEVC) standard, the
NAL unit header contains two bytes, to drive the NAL unit
type, the TemporallD (similar to the temporal_id in H.264/
AVC) and the layer_id, which is always reserved to be 0 for
the HEVC base view/layer. MV-HEVC is the multiview
extension of HEVC without new coding tools. Each view is
identified by a layer_id in the NAL unit header, in a way that

30

40

45

60

20

layer_id is equivalent to view order index, which is similar
to the view order index in MVC that defines the decoding
order of the views in each access unit. 3D-HEVC supports
coding of both texture only video and texture plus depth
video. In 3D-HEVC, new coding tools are used for both
texture and depth. The layer_id syntax element may be used
in NAL unit header to identify a texture or depth view.

The above described the concept of an operation point and
target output views. The operation point and target output
views may be applicable to the multiview coding standards.

An operation point defines a subset of the views in
multiview coding or a subset of the layers in scalable video
coding. For instance, an operation point of a bitstream is
associated with a set of layer_identifiers or view identifiers
(view_id) and a temporal identifier (temporal_id or tempo-
rallD, as applicable). If a NAL unit’s layer or view identifier
is in an operation point’s set of layer_identifiers or view
identifiers and the NAL unit’s temporal_identifier is less
than or equal to the operation point’s temporal identifier, the
NAL unit is associated with the operation point.

An operation point representation is a bitstream subset
(i.e., a sub-bitstream) that is associated with an operation
point. The operation point representation of an operation
point may include each NAL unit that is associated with the
operation point. The operation point representation may not
include VCL NAL units that are not associated with the
operation point.

An external source may specify a set of layer or view
identifiers for an operation point. For example, a content
delivery network (CDN) device may specify the set of
layer_identifiers. In this example, the CDN device may use
the set of layer_identifiers to identify an operation point. The
CDN device may then extract the operation point represen-
tation for the operation point and forward the operation point
representation, instead of the original bitstream, to a client
device. Extracting and forwarding the operation point rep-
resentation to the client device may reduce the bit rate of the
bitstream. In some examples, instead of or in addition to the
CDN device, a device further downstream, such as a router,
may perform the sub-bitstream extraction.

For example, the target output views may define the views
that are to be received by destination device 14. In some
examples, the CDN or some intermediate device, such as a
network entity, may extract target output views. For
instance, for movie theaters, it may be beneficial to display
as many views as possible because of the relative size of the
theatre screen and the positions of the viewers. For mobile
device, the screen size may limit the number of views that
can be displayed, and moreover, given that the viewing
distance of the viewer will generally be proximate to the
mobile device, it may only be necessary for the mobile
device to receive a few views.

FIG. 4 is a block diagram illustrating an example set of
devices that form part of network 100. In this example,
network 100 includes routing devices 104A, 104B (routing
devices 104) and transcoding device 106. Routing devices
104 and transcoding device 106 are intended to represent a
small number of devices that may form part of network 100.
Other network devices, such as switches, hubs, gateways,
firewalls, bridges, and other such devices may also be
included within network 100. Moreover, additional network
devices may be provided along a network path between
server device 102 and client device 108. Server device 102
may correspond to source device 12 (FIG. 1), while client
device 108 may correspond to destination device 14 (FIG.
1), in some examples.

US 9,479,779 B2

21

In general, routing devices 104 implement one or more
routing protocols to exchange network data through network
100. In some examples, routing devices 104 may be con-
figured to perform proxy or cache operations. Therefore, in
some examples, routing devices 104 may be referred to as
proxy devices. In general, routing devices 104 execute
routing protocols to discover routes through network 100.
By executing such routing protocols, routing device 104B
may discover a network route from itself to server device
102 via routing device 104A.

Routing devices 104 and possibly transcoding device 106
are examples of devices that may implement techniques
described in this disclosure. For example, as part of routing
video data from server device 102 to client device 108,
routing devices 104 may receive a bitstream, and from the
bitstream routing devices 104 may extract a sub-bitstream
that is transmitted to client device 108. As described in more
detail, routing devices 104 may extract a sub-bitstream
utilizing the techniques described in this disclosure. In some
examples, transcoding device 106 may be a media aware
network entity (MANE) that performs the sub-bitstream
extraction techniques described in this disclosure.

For example, transcoding device 106 may include one or
more processors 110, and processor(s) 110 may be config-
ured to implement the techniques described in this disclo-
sure. Examples of processor(s) 110 include digital signal
processors (DSPs), general purpose microprocessors, appli-
cation specific integrated circuits (ASICs), field program-
mable logic arrays (FPGAs), or other equivalent integrated
or discrete logic circuitry. In some examples, computer-
readable storage medium may store instructions that when
executed cause one or more processors 110 of transcoding
device 106 to implement the techniques described in this
disclosure.

In examples where routing devices 104 either alone or in
combination with transcoding device 106 perform the tech-
niques described in this disclosure, routing devices 104 may
include one or more processors that either alone or in
combination with one or more processors 110 implement the
techniques described in this disclosure. Moreover, in this
disclosure, when a device intermediate to video encoder 20
and video decoder 30 (e.g., a MANE device) is described as
implementing the techniques described in this disclosure,
such disclosure should be interpreted to mean that one or
more processors, such as one or more processors 110,
implementing the techniques described in this disclosure.

As described above, the techniques of this disclosure are
generally related to sub-bitstream extraction, in which a
device (e.g., routing devices 104 and/or transcoding device
106) may extract one or more views based on the target
output views. In the H.264/AVC standard (i.e., “Advanced
video coding for generic audiovisual services,” ITU-T Rec-
ommendation H.264, June 2011), Annex H is directed to
multiview video coding (MVC). In other words, Annex H
includes the MVC extension for H.264/AVC. Section H.8 of
Annex H of H.264/AVC defines the MVC decoding process.
Subclause H.8.5 of Annex H is directed to the “Specification
of bitstream subsets.” Subclauses H.8.5.1 and H.8.5.2
specify the processes for deriving required anchor and
non-anchor view components, respectively, that are used in
the sub-bitstream extraction process. Subclause H.8.5.3
specifies the sub-bitstream extraction process. Subclause
H.8.5.4 specifies the base view bitstream subset. Subclause
H.8.5.5 gives an informative example for creation of a base
view in case the original base view in the input bitstream to
the bitstream extraction process is not included in the output
bitstream subset.

10

15

20

25

30

35

40

45

50

55

60

65

22

The MVC+D specification leverages the bitstream extrac-
tion process defined in the H.264/AVC MVC extension.
However, the H.264/AVC MVC extension did not include
both texture view components and depth view components,
and instead used the term view component. Because the
MVC+D standard allows for depth view components, the
MVC+D specification modified some of the subclauses of
H.8.5 of H.264/AVC MVC extension.

Also, in the current MVC+D specification, once a texture
or depth of one view is dependent by either the texture or
depth of the target output views, both texture and depth
views are included in the output sub-bitstream. For instance,
assume that view 1 is an output view. Also, assume that
texture components in view 1 are dependent upon texture
components of view 0, and that depth components in view
1 are dependent upon depth components of view 2. In this
example, in the current MVC+D specification, even though
depth components of view 0 are not needed, depth compo-
nents of view 0 are included in the output sub-bitstream
because the texture components of view 0 are included.
Also, in this example, in the current MVC+D specification,
even though texture components of view 2 are not needed,
texture components of view 2 are included in the output
sub-bitstream because the depth components of view 1 are
included.

The MVC+D specification, subclause A.1.1 of Annex A is
directed to the specification of the bitstream subsets. The
specifications of subclause H.8.5 of H.264/AVC MVC
extension apply to subclause A.1.1 of MVC+D. Subclause
A.1.1.1 of MVC+D is directed to the derivation process for
required anchor view components, and is similar to sub-
clause H.8.5.1 of H.264/AVC MVC extension with the
substitution of “view component” in H.8.5.1 with either
“depth view component” or “texture view component” and
“view” in H.8.5.1 with either “depth view” or “texture
view.” Subclause A.1.1.2 of MVC+D is directed to the
derivation process for required non-anchor view compo-
nents, and is similar to H.8.5.2 of H.264/AVC MVC exten-
sion with the substitution of “view component” with either
“depth view component” or “texture view component” and
“view” with either “depth view” or “texture view.”

Subclause A.1.1.3 of MVC+D is directed to the sub-
bitstream extraction process. In MVC+D, it may be require-
ment of bitstream conformance that any sub-bitstream that is
the output of the process specified in this subclause with
pldTarget (priority_id target value) equal to any value in the
range of 0 to 63, inclusive, tldTarget (temporal_id or tem-
porallD target value) equal to any value in the range of O to
7, inclusive, viewld TargetList consisting of any one or more
values of viewld Target identifying the views in the bitstream
may be conforming to the MVC+D standard.

The viewldTarget may be the target output views that a
device intermediate to video encoder 20 and video decoder
30 (e.g., a network entity) determined as the target output
views for destination device 14. Also, a conforming bit-
stream contains one or more coded slice NAL units with
priority_id equal to 0 and temporal_id equal to 0. Moreover,
it may be possible that not all operation points of sub-
bitstreams resulting from the sub-bitstream extraction pro-
cess have an applicable level_idc or level_idc[i]. In this
case, each coded video sequence in a sub-bitstream may still
be required to conform to one or more of the profiles
specified in Annex A, Annex H, and Annex [of MVC+D, but
may not satisty the level constraints specified in subclauses
A3, H.10.2, and 1.10.2, respectively, of MVC+D.

The inputs to the sub-bitstream extraction process may be:
avariable depthPresentFlagTarget (when present), a variable

US 9,479,779 B2

23

pldTarget (when present), a variable tIldTarget (when pres-
ent), and a list viewldTargetList consisting of one or more
values of viewldTarget (when present). The output of the
sub-bitstream extraction process may be a sub-bitstream and
one or more VOIdx (view order index) for a list of view
orders (VOidxList).

When depthPresentFlagTarget is not present as input, the
depthPresentFlagTarget may be inferred to be equal to O.
When pldTarget is not present as input, pldTarget may be
inferred to be equal to 63. When tIdTarget is not present as
input, tldTarget may be inferred to be equal to 7.

In the current MVC+D specification, a device (e.g., a
network entity that is intermediate to video encoder 20 and
video decoder 30) may derive the sub-bitstream from a
bitstream constructed by video encoder 20 by applying the
following operations in sequential order. For instance, the
device may let VOIdxList be empty and minVOIdx be the
VOIdx value of the base view. For each value of viewld-
Target included in viewldTargetList, the device may invoke
the process specified in subclause H.8.5.1 for texture views
with viewldTarget as input. If depthPresentFlagTarget is
equal to 1, for each value of viewldTarget included in
viewldTargetList, the device may invoke the process speci-
fied in subclause H.8.5.1 for depth views with the viewld-
Target as input.

For each value of viewldTarget included in viewldTarget
list, the device may invoke the process specified in subclause
H.8.5.2 for texture views with the value of viewldTarget as
input. If depthPresentFlagTarget is equal to 1, for each value
of viewldTarget included in viewldTargetList, the device
may invoke the process specified in subclause H.8.5.2 for
depth views with the viewldTarget as input.

The device may then mark all VCL, NAL units and filler
data NAL units for which any of the following conditions
are true as “to be removed from the bitstream™: priority_id
is greater than pldTarget, temporal_id is greater than tld-
Target, anchor_pic_flag is equal to 1 and view_id is not
marked as “required for anchor,” anchor_pic_flag is equal to
0 and view_id is not marked as “required for anchor,”
nal_ref idc is equal to 0 and inter_view_flag is equal to 0
and view_id is not equal to any value in list viewldTar-
getList, or nal_unit_type is equal to 21 and depthPresent-
FlagTarget is equal to 0. The device may then remove all
access units for which all VCL NAL units are marked as “to
be removed from the bitstream,” and may remove all VCL
NAL units and filler data NAL units that are marked as “to
be removed from the bitstream.”

When VOIdxList includes only one value of VOIdx that
is equal to minVOIdx, the device may remove the following
NAL units: (1) all NAL units with nal_unit_type equal to 14
or 15, and (2) all NAL units with nal_unit_type equal to 6
in which the first supplemental enhancement information
(SEI) message has payloadType in range of 36 to 44,
inclusive. In cases where VOIdxList includes only one value
of VOIdx equal to minVOIdx, the sub-bitstream may
include only the base view or only a temporal subset of the
base view. When depthPresentFlagTarget is equal to O, the
device may remove all NAL units with nal_unit_type equal
to 6 in which the first SEI message has payloadType in range
of 45 to 47, inclusive.

In the sub-bitstream extraction process, let maxTid be the
maximum temporal_id of all the remaining VCL NAL units.
The device may remove all NAL units with nal_unit_type
equal to 6 that only contain SEI messages that are part of an
MVC scalable nesting SEI message with any of the follow-
ing properties: (1) operation_point_flag is equal to 0 and
all_view_components_in_au_flag is equal to 0 and none of

25

40

45

60

24

sei_view_id[i] for all i in the range of 0 to num_view_com-
ponents_minus1, inclusive, corresponds to a VOIdx value
included in VOIdxList, or (2) operation_point_flag is equal
to 1 and either sei_op_temporal_id is greater than maxTid or
the list of sei_op view_id[i] for all i in the range of 0 to
num_view_components_op_minus1, inclusive, is not a sub-
set of viewldTargetlist (i.e, it is not true that
sei_op_view_id[i] for any i in the range of 0 to num_
view_components_op_minus], inclusive, is equal to a value
in viewldTargetlList). The device may also remove each
view scalability information SEI message and each opera-
tion point not present SEI message, when present.

When VOIdxList does not include a value of VOIdx equal
to minVOIdx, the view with VOIdx equal to the minimum
VOIdx value included in VOIdxList is converted to the base
view of the extracted sub-bitstream. An informative proce-
dure that outlines key processing step to create a base view
is described in subclause 1.8.5.6 in MVC+D specification.
When VOIdxList does not include a value VOIdx equal to
minVOIdx, the resulting sub-bitstream according to the
operations above may not contain a base view that conforms
to one or more profiles specified in Annex A of the MVC+D
specification. In this case, by the last operation step, the
remaining view with the new minimum VOIdx values is
converted to be the new base view that conforms to one or
more profiles specified in Annex A and Annex H.

In this manner, a network entity, which is a device
intermediate to video encoder 20 and video decoder 30 (e.g.,
routing devices 104 and/or transcoding device 106), may
extract a sub-bitstream from the bitstream generated by
video encoder 20 in accordance with the current MVC+D
standard, and with respect to H.8.5, the MVC standard. The
device intermediate to video encoder 20 and video decoder
30 may implement similar techniques for sub-bitstream
extraction for scalable video or for other multiview coding
standards (e.g., 3D-AVC, MV-HEVC, and 3D-HEVC).

However, there may be certain issues with the existing
sub-bitstream extraction processes for SVC, MVC, and
MVC+D, as a few examples. As one example, for some
sub-bitstream extraction processes, there may be no mecha-
nism for a sub-bitstream extraction process to adaptively
choose the extraction operation. In some instances, the
sub-bitstream extraction process may be limited to either a
first extraction technique or a second extraction technique,
without an adaptive mechanism for selecting the appropriate
extraction technique.

To understand sub-bitstream extraction, this disclosure
uses the terms “target output view” and “target view” or
“subset of views.” The target view may be a view of the
subset of views. In some examples, the disclosure may
simply use the term “view” when referring to a “target
view.” In the context of bitstream extraction, a target view
is simply referred to a view which has coded pictures to be
extracted out to be in the sub-bitstream. The target output
view is the view that is to be displayed on display device 31.
A subset of views refer to the views that are needed to
properly decode the target output view, even if a view in the
subset of views is not displayed. The target output view may
be one of the views in the subset of views, but there may be
additional views. More generally, if both texture view com-
ponents and depth view components or one of texture view
components or depth view components of a view or coded
pictures of a layer in scalable video coding are needed for
decoding a target output view, the view or layer may be
considered as being a view in the subset of views or subset
of layers needed for decoding a target output view or target
output layer.

US 9,479,779 B2

25

As an example, referring back to FIG. 3, assume that the
views to be displayed are views S2 and S3. In this example,
the list of target output views includes views S2 and S3. As
illustrated in FIG. 3, coded pictures in view S2 are inter-
view predicted with coded pictures in view SO (e.g., the first
picture of view S2 is inter-view predicted with the first
picture of view S0). Therefore, to properly decode the coded
pictures of view S2, video decoder 30 may need the coded
pictures from view SO, even though view SO is not to be
displayed. Also, as illustrated in FIG. 3, coded pictures in
view S3 are inter-view predicted with coded pictures in view
S4 and S2. Therefore, to properly decode the coded pictures
of view S3, video decoder 30 may need the coded pictures
from view S2 (which video decoder 30 will receive since
view S2 is a target output view). In this example, video
decoder 30 may also need the coded pictures from view S4,
even though view S4 is not to be displayed. Accordingly, in
this example, the subset of views includes views S0, S2, S3,
and S4. No other views are needed to properly decode views
S2 and S3 (the target output views), and can therefore be
discarded (removed from the bitstream).

In the first extraction technique, the sub-bitstream extrac-
tion process may need to target at the minimum size of the
resulting sub-bitstream, by discarding as much possible data
that is not required for decoding of a list of target output
views or a list of target output layers. This first extraction
technique may be suitable as a response to a request by a
particular end user terminal (e.g., a particular one of desti-
nation device 14 or client device 108).

This first extraction technique may be referred to as an
“optimal sub-bitstream extraction technique.” In this opti-
mal sub-bitstream extraction technique, the device interme-
diate to video encoder 20 and video decoder 30 may remove
video data for any coded picture that is not needed for
decoding the output views or output layers. For instance,
keeping with the previous example where the target output
views are view S2 and view S3, view SO may be a view of
the subset of views because pictures of view SO are needed
to decode view S2, and coded pictures of view S2 are needed
to decode view S3. However, not all coded pictures of view
SO are needed to decode the coded pictures of view S2 and
S3. As an example, referring back to FIG. 3, the coded
picture at time T1 of view SO is not needed to decode any
of the coded pictures in view S2 and view S3 (e.g., none of
the coded pictures in view S2 and S3 are inter-view pre-
dicted with the coded picture at time T1 of view S0 and none
of the coded pictures in view S2 and S3 are inter-view
predicted with a coded picture that is inter-predicted with the
coded picture at time T1 of view SO). Therefore, even
though view SO is a view of the subset of views, not all
coded pictures of view SO are needed to decode the target
output views. In the optimal sub-bitstream extraction tech-
nique, the device intermediate to video encoder 20 and video
decoder 30 may remove the coded picture at time T1 of view
S0, and not include this coded picture in the sub-bitstream.
For example, the device intermediate to video encoder 20
and video decoder 30 may remove both the texture view
component and the depth view component.

In the second extraction technique, the sub-bitstream
extraction process may need to target at the self-complete-
ness of the output sub-bitstream. To achieve the self-com-
pleteness of the output sub-bitstream, the sub-bitstream
extraction process may maintain one or more of the follow-
ing: each layer to be complete, each view to have both
texture views and depth views if depth view is present for at
least one view, and each view component to have both
texture view component and depth view component if at

30

40

45

50

26

least one depth view component exists in the output sub-
bitstream. In this case, examples of a layer include a
spatial/quality scalable layer, a texture view, or a depth view.
For a layer to be complete may mean to have an access unit
at a temporal location whenever another layer has it. A
self-complete sub-bitstream is still “fully extractable” and
may be more useful if the sub-bitstream extraction is per-
formed by a streaming server (e.g., server device 102) or an
intermediate network element (e.g., a MANE device) and
any subset of the views included in the output may be
requested as the list of target output views. In these
examples, a streaming server or an intermediate network
element are examples of a network entity.

The second extraction technique may be referred to as a
“self-complete sub-bitstream extraction technique.” In the
self-complete sub-bitstream extraction technique, both view
components of a view are included in the sub-bitstream,
even if both view components are not needed for decoding
the output views. For instance, in FIG. 3, assume that the
texture view component of the view component at time TO
of view S4 is needed to decode the texture view component
of the view component at time TO of view S3. Also, assume
that the depth view component of the view component at
time TO of view S4 is not needed to decode the depth view
component of the view component at time TO of view S3. In
the “self-complete extraction technique,” because the tex-
ture view component of the view component at time TO of
view S4 is included in the sub-bitstream to decode view S3,
the device intermediate to video encoder 20 and video
decoder 30 (e.g., a network entity) may include both the
texture view component and the depth view component of
the view component at time TO of view S4.

The first and second extraction techniques described
above are described for purposes of illustration only and
should not be considered limiting. In general, in some other
techniques, the device performing the sub-bitstream extrac-
tion process may not be able to adapt the sub-bitstream
extraction technique (e.g., the device may not be configu-
rable to selectively implement one of the two extraction
techniques described above). Rather, the device may be
limited to either the first or the second extraction technique.
Being limited to either the first or second extraction tech-
nique may result in less optimal sub-bitstream extraction
then would be otherwise possible.

Furthermore, the sub-bitstream extraction process in the
MVC+D draft specification may not be optimal and may
have the following problems or shortcomings. For example,
the texture view components of the target output views may
be inter-view predicted with the texture view components of
a set of views, and the depth view components of the target
output views may not be inter-view predicted with the depth
view components of the set of views. However, even though
the depth view components of the set of views are not
needed for decoding the target output views, the depth view
components of the set of views may nevertheless be
included in the sub-bitstream. Similarly, the depth view
components of the target output views may be inter-view
predicted with the depth view components of a set of views,
and the texture view components of the target output views
may not be inter-view predicted with the texture view
components of the set of views. However, even though the
texture view components of the set of views is not needed
for decoding the target output views, the texture view
components of the set of views may nevertheless be
included in the sub-bitstream.

The sub-bitstream extraction techniques described in this
disclosure may be directed to an adaptive (e.g., selective)

US 9,479,779 B2

27

manner in which to select the extraction process. Moreover,
the sub-bitstream extraction techniques may provide for an
optimized bitstream extraction process with improvements
for the MVC+D video coding specification.

For purposes of illustration, the sub-bitstream extraction
process, in accordance with the techniques described in this
disclosure, may be performed by a network entity, an
example of which is a MANE device. For instance, routing
devices 104 and/or transcoding device 106 may be consid-
ered as a MANE device. In some examples, server device
102 may implement the techniques described in this disclo-
sure, but solely for ease of description, the techniques are
described with a network entity that is intermediate to server
device 102 and client device 108. It may even be possible for
client device 108 to implement the techniques described in
this disclosure, but generally the techniques described in this
disclosure will be performed by an intermediate device (e.g.,
a network entity like a MANE device).

In the techniques described in this disclosure, the sub-
bitstream extraction process may define a plurality of sub-
bitstream extraction modes. An external means may deter-
mine the particular sub-bitstream extraction mode. The term
“external means” refers to generically to a hardware unit or
a software unit executing on a hardware unit that is external
to video decoder 30 (e.g., the video decoder that is to receive
the extracted sub-bitstream). For example, the external
means may be a component of the device intermediate to
video encoder 20 and video decoder 30 such as a MANE
device and/or server device 102. Such a component in the
MANE device may not be specified in a video coding
specification. For instance, the external means may set one
or more variables for which the value is used by the MANE
device and/or video decoder 30, but the value may be set
outside of the MANE device and/or video decoder 30 and
provide as an input to the MANE device and/or video
decoder 30.

As one example, the MANE device may execute software
or firmware, on hardware, that conforms to an application
processing interface (API) (e.g., the MANE device may
include the hardware unit that forms the external means or
may include the software unit executing on the hardware
unit that forms the external means). This software or firm-
ware is one example of the external means. For instance, to
select the sub-bitstream extraction mode, the MANE device
may receive from the external means a value indicative of
the selected extraction mode. The external means may set
one or more variables for which the value is used by the
MANE device and/or video decoder 30, but the external
means may determine the value outside of the MANE device
and/or video decoder 30. The external means may provide
the value as an input to the MANE device and/or video
decoder 30, and the MANE device may use the input to
extract the sub-bitstream in the selected manner.

In some examples, this software or firmware may receive
an input information from client device 108 or destination
device 14 indicating the characteristics of client device 108
or destination device 14 (e.g., mobile device or desktop
device, size of display device 31, decoding capabilities of
video decoder 30, exact requirements of the target output
views that can be received, and the like). In some examples,
this software or firmware may determine information
regarding the characteristics of the connection to client
device 108 or destination device 14 (e.g., type of subnet-
work, bandwidth requirements for safe, optimal, or some
intermediate level of reception, and the like).

From the received or determined information, the soft-
ware or firmware may determine the particular sub-bitstream

10

15

20

25

30

35

40

45

50

55

60

65

28

extraction mode (e.g., select a mode from the plurality of
sub-bitstream extraction modes). For example, the software
or firmware may maintain a list of sub-bitstream extraction
modes, where each sub-bitstream extraction mode indicates
a particular manner in which to perform the sub-bitstream
extraction. In this example, the software or firmware may
determine a value (e.g., an index into the list of sub-
bitstream extraction modes) that identifies the selected sub-
bitstream extraction mode. The software or firmware may
output the determined value to the MANE device, and in
turn, the MANE device may determine the selected sub-
bitstream extraction mode, and extract the sub-bitstream
from the received coded bitstream in the manner defined by
the selected sub-bitstream extraction mode.

In some examples, instead of or in addition to software or
firmware executing on a hardware unit of the MANE device,
the MANE device may include a hardware unit configured
to receive or determine information of the characteristics of
client device 108 or destination device 14 or the connection
of client device 108 or destination device 14, and select a
particular sub-bitstream extraction mode. This hardware unit
is another example of an external means.

In the techniques described in this disclosure, the external
means may set one or more variables that each define the
manner in which the sub-bitstream is to be extracted. The
external means may select a value from the one or more
variables, and the MANE device may receive the value. The
external means may also output the value to video decoder
30. Video decoder 30 may receive the value and determine
the sub-bitstream that video decoder 30 is to receive. Video
decoder 30 may then decode the target output views or
layers based on the value indicating the sub-bitstream that
video decoder 30 is to receive. In this sense, the external
means may be a unit that is external to video decoder 30 that
sets one or more variables whose value is used by video
decoder 30 and provided to video decoder 30 as an input.

If the external means is not present, the MANE device
may be configured to select a default sub-bitstream extrac-
tion mode. The default sub-bitstream extraction mode may
be a mode that identifies anyone of the possible sub-
bitstream extraction techniques. In some example, the video
coding specification may define a default sub-bitstream
extraction technique, and the default sub-bitstream extrac-
tion mode may identify the sub-bitstream extraction tech-
nique defined by the video coding specification as the
default sub-bitstream extraction technique.

As described above, each value of the sub-bitstream
extraction mode may identify a specific sub-bitstream
extraction technique to be used in generating the extracted
sub-bitstream output. As one example, a mode of the plu-
rality of modes may define that the MANE device should
maintain the maximum self-completeness in the extracted
sub-bitstream that is outputted. For instance, both the depth
view and texture view components or each layer is included
in the outputted sub-bitstream. As another example, a mode
of the plurality of modes may define that the MANE device
should extract the sub-bitstream having the minimum size.
For instance, the MANE device may extract from the
bitstream only the coded pictures needed for decoding the
target output view or the target output layer.

In other words, one example sub-bitstream extraction
mode may be the “optimal sub-bitstream extraction” mode.
Another example sub-bitstream extraction mode may be the
“self-complete sub-bitstream extraction” mode. In this
example, assume that the extraction mode value 0 refers to
the optimal sub-bitstream extraction mode, and that the
extraction mode value 1 refers to the self-complete sub-

US 9,479,779 B2

29

bitstream extraction mode. If the external means selects the
extraction mode value 0, the MANE device may remove as
much video data as possible from the bitstream, while
ensuring that there is sufficient video data to decode the
target output views. If the external means selects the extrac-
tion mode value 1, the MANE device may include both the
target view components and the depth view_components of
the views if either the target view component or the depth
view component is needed for decoding the target output
views.

As another example, a mode of the plurality of modes
may define that the MANE should maintain an intermediate
self-completeness (e.g., each layer being complete, each
view, which may include two layers, one texture view and
one depth view being complete). This mode may be referred
to as the “intermediate sub-bitstream extraction” mode. In
the intermediate sub-bitstream extraction mode, the MANE
may keep only the view components needed for decoding
the target output views. For example, if the texture view
components of a view are needed, but the depth view
components of the view are not needed for decoding the
target output views, the MANE device may output the
texture view components for the view, and may not output
the depth view components. Similarly, in the intermediate
sub-bitstream extraction mode, if the depth view compo-
nents of a view are needed, but the texture view components
of the view are not needed for decoding the target output
views, the MANE device may output the depth view com-
ponents for the view, and may not output the texture view
components.

There may be multiple examples of intermediate self-
completeness, and each of these levels may represent a mode
of the plurality of sub-bitstream extraction modes. For
example, in one example of an intermediate sub-bitstream
extraction mode, the MANE may keep both the texture view
components and the depth view components of views, even
if both are not needed, but may remove the texture view
components and the depth view components if both are not
needed for decoding the target output view. In other words,
if the texture view component of a view is to be included,
then the MANE device may include the depth view com-
ponent as well, even if not needed for decoding the target
output views. However, if both the texture view component
and the depth view component of a view are not needed for
decoding the target output view, then the MANE device may
remove both the texture view component and the depth view
component of the target view.

This example of the intermediate self-complete extraction
technique may be different than the self-complete extraction
technique because in the self-complete extraction technique
both the texture view components and the depth view
components of a view may be included in the sub-bitstream
even if neither is needed so that the view can be fully
extractable. In this example of the intermediate self-com-
plete extraction technique, if a texture view component or
depth view component of a view is needed, both are
included in the output sub-bitstream, and if neither of the
view is needed, then neither is included in the output
sub-bitstream.

There may also be other selectable modes that define the
manner in which the sub-bitstream should be extracted, in
addition to those described above, and the example modes
described above should not be considered limiting. For
instance, the techniques described in this disclosure are not
limited to the specific sub-bitstream extraction modes
described above. In general, the techniques described in this
disclosure may be extended to examples where the external

10

25

30

40

45

30

means selects a sub-bitstream extraction mode from a plu-
rality of sub-bitstream extraction modes and the MANE
device extracts the sub-bitstream in accordance with the
selected sub-bitstream extraction mode, which allows for an
adaptive sub-bitstream extraction technique. The optimal
sub-bitstream extraction mode, the self-complete sub-bit-
stream extraction mode, and the examples of intermediate
sub-bitstream extraction modes are provided for purposes of
illustration. Additional modes or other types of extraction
modes may be possible for the example adaptive sub-
bitstream extraction techniques described in this disclosure.

The multi-mode sub-bitstream extraction techniques
described in this disclosure may be applicable for any
scalable media codec, including non-video codecs. In other
words, although the techniques described in this disclosure
are described with respect to video coding, the techniques
are not so limited and may be extended generally to media
coding techniques.

Also, not all of the sub-bitstream extraction modes may be
required to result in a conforming bitstream. For example, if
the MANE device extracts the sub-bitstream in a manner
defined by a one of the sub-bitstream extraction modes, the
resulting bitstream may be a conforming bitstream. If the
MANE device extracts the sub-bitstream in a manner
defined by another one of the sub-bitstream extraction
modes, the resulting bitstream may not be a conforming
bitstream.

In this manner, video encoder 20 need not necessarily
perform any additional tasks to ensure that the extracted
sub-bitstream is conforming for all modes. This may result
in fewer complications for video encoder 20 to construct the
bitstream.

Accordingly, in the techniques described in this disclo-
sure, the external means may select a sub-bitstream extrac-
tion mode from a plurality of sub-bitstream extraction
modes, and the MANE device may receive a selection of the
sub-bitstream extraction mode. Each of the sub-bitstream
extraction modes defines a manner in which to extract coded
pictures from views or layer from the bitstream to allow
decoding of target output views or target output layers. As
described above, in some examples, each coded picture
comprises VCL. NAL units of a view or a layer within an
access unit. In some examples, each coded picture of a view
is one of a view component, a texture view component, and
a depth view component. For instance, if there is no depth
data, then the coded picture of a view may be a view
component. If there is depth data, then the coded picture of
a view may be texture view component or a depth view
component. In some examples, each coded picture of a layer
is a picture of the layer.

The techniques then extract, from the bitstream, a sub-
bitstream in the manner defined by the selected sub-bit-
stream extraction mode. The techniques output the extracted
sub-bitstream to video decoder 30. It is this sub-bitstream
that video decoder 30 decodes to reconstruct the target
output views or layers.

As one example, the external means may select a self-
complete sub-bitstream extraction mode from the plurality
of sub-bitstream extraction modes, and the MANE device
may receive information indicative of the selection of the
self-complete sub-bitstream extraction mode. When the
external means selects the self-complete sub-bitstream
extraction mode, the MANE device may extract all available
texture view components and depth view components of a
view if a texture view or depth view of the view is needed
for decoding the target output views. In other words, even if
the depth view of the view is not needed for decoding the

US 9,479,779 B2

31

target output views, but the texture view of the view is
needed, the MANE device may extract both the available
texture view components and the available depth view
components of the view. Similarly, even if the texture view
of the view is not needed for decoding the target output
views, but the depth view of the view is needed, the MANE
device may extract both the available texture view compo-
nents and the available depth view components of the view.

As another example, the external means may select an
intermediate sub-bitstream extraction mode from the plural-
ity of sub-bitstream extraction modes, and the MANE
device may receive information indicative of the selection of
the intermediate sub-bitstream extraction mode. When the
external means selects the intermediate sub-bitstream
extraction mode, the MANE device may extract one of: (1)
all available texture view components of a view if the texture
view of the view is needed for decoding the target output
views, and no depth view components of the view if the
depth view of the view is not needed for decoding the target
output views, and (2) all available depth view components
of the view if the depth view of the view is needed for
decoding the target output views, and no texture view
components of the view if the texture view of the view is not
needed for decoding the target output views.

In other words, if the texture view is needed, but the depth
view is not needed for decoding the output views, the
MANE device may extract only the texture view compo-
nents for outputting, and may remove the depth view com-
ponents from the sub-bitstream. If the depth view is needed,
but the texture view is not needed for decoding the output
views, the MANE device may extract only the depth view
components for outputting, and may remove the texture
view components from the sub-bitstream. The manner in
which the MANE device may extract only the texture view
components or depth view components, as needed, is
described below with respect to the maintenance of separate
lists.

As yet another example, the external means may select an
optimal sub-bitstream extraction mode from the plurality of
sub-bitstream extraction modes, and the MANE device may
receive information indicative of the selection of the optimal
sub-bitstream extraction mode. When the external means
selects the optimal sub-bitstream extraction mode, the
MANE device may extract only texture view components
and depth view components of a view that are needed for
decoding the target output views, and no texture view
components and depth view components of the view that are
not needed for decoding the target output views. In other
words, only if a texture view component or a depth view
component is needed does the MANE device include the
texture view component or the depth view component in the
sub-bitstream. All other view components, even if from the
view that includes view components in the sub-bitstream,
that are not needed for decoding the target output views are
removed from the sub-bitstream.

Furthermore, the MANE device may perform additional
tasks to provide possible improvements for the sub-bit-
stream extraction currently defined by the MVC+D speci-
fication. As one example, to implement the intermediate
sub-bitstream extraction mode, the MANE device may
maintain separate view lists (e.g., target view lists) for
texture views and depth views for a given list of target output
views. For instance, the MANE device may determine the
output views or may determine, from received information,
the output views. For the output views, the MANE device
may keep separate lists for the texture views and the depth
views for the views that are needed for decoding the target

10

15

20

25

30

35

40

45

50

55

60

65

32

output views. In other words, the MANE device may
maintain a list of texture views that are to be extracted from
the views, and maintain a separate list of depth views that are
to be extracted from the views.

For example, if the target output views include view 0,
view 1, and view 2, and view 2 is inter-view predicted with
view 3, then the view list may identify view 0, view 1, view
2, and view 3 as views that need to be extracted. View 3
needs to be extracted because video decoder 30 needs view
3 to inter-predict decode view 2. However, video decoder 30
may not need both the texture view components and the
depth view components of view 3 to inter-predict decode
view 2. Accordingly, in the techniques described in this
disclosure, the MANE device may separately maintain the
texture views for views in a first view list and the depth
views for views in a second view list.

For example, the MANE device may determine if a
texture view component belongs to a view list of the “to be
extracted” texture views. For instance, the MANE device
may determine whether a texture view component belongs
to a texture view identified in the list of texture views. If the
view component is a “to be extracted” texture view com-
ponent of the view list, the MANE device may extract the
texture view component for output in the sub-bitstream. If
the view component does not belong to a view list of the “to
be extracted” texture views, the MANE device may not
extract the texture view component for output in the sub-
bitstream.

For example, the MANE device may extract the texture
view component only if the texture view component belongs
to the texture view identified in the list of texture views. The
MANE device may avoid the extraction (e.g., avoiding
extracting or avoid extracting) of a corresponding depth
view component (e.g., not extract the corresponding depth
view component) to the texture view component if the depth
view component belongs to a depth view that is not identi-
fied in the list of depth views. In this manner, the MANE
device may extract all available texture view components of
a view if the texture view of the view is needed for decoding
the target output views, and no depth view components of
the view if the depth view of the view is not needed for
decoding the target output views.

Similarly, the MANE device may determine if a view
component belongs to a view list of the “to be extracted”
depth views. For instance, the MANE device may determine
whether a depth view component belongs to a depth view
identified in the list of depth views. If the view component
is a “to be extracted” depth view component of the view list,
the MANE device may extract the depth view component
for output in the sub-bitstream. If the view component does
not belong to a view list of the “to be extracted” depth views,
the MANE device may not extract the depth view compo-
nent for output in the sub-bitstream.

For example, the MANE device may extract the depth
view component only if the depth view component belongs
to the depth view identified in the list of depth views. The
MANE device may avoid the extraction of a corresponding
texture view component (e.g., not extract the corresponding
texture view component) to the depth view component if the
texture view component belongs to a texture view that is not
identified in the list of texture views. In this manner, the
MANE device may extract all available depth view compo-
nents of a view if the depth view of the view is needed for
decoding the target output views, and no texture view
components of the view if the texture view of the view is not
needed for decoding the target output views.

US 9,479,779 B2

33

In the above example, the MANE device may maintain
two separate lists for the texture views and the depth views
of the view list. For example, the list for the texture views
may include the texture views of the views that are needed
for decoding the texture view components of the target
output views. The list for the depth views may include the
depth views of the views that are needed for decoding the
depth view components of the target output views.

In this example, if a depth view component is needed, but
the corresponding texture view component is not needed for
decoding the view components of the target output views,
the MANE device may extract the depth view component,
and may not extract the texture view component. Similarly,
if a texture view component is needed, but the corresponding
depth view component is not needed for decoding the view
components of the target output views, the MANE device
may extract the texture view component, and may not
extract the depth view component.

In this sense, the list of texture views may include texture
views whose texture view components are to be extracted,
and the list of depth views may include depth views whose
depth view components are to be extracted. However, a
texture view of a view identified in the list of texture views
may not have a corresponding depth view of the view
identified in the list of depth views, and vice-versa. In other
words, the list of texture views includes a texture view of at
least one view, and the list of depth views does not include
a corresponding depth view of the at least one view, or the
list of depth views a depth view of the at least one view, and
the list of texture views does not include a corresponding
texture view of the at least one view. In this manner, rather
than extracting both the texture view components and the
depth view components for output, if only the texture view
components are needed or if only the depth view compo-
nents are needed, the MANE device may extract only the
texture view components and the depth view components
needed to decode the target output views and include only
the needed texture view components or depth view compo-
nents in the sub-bitstream.

In some examples, the MANE device may apply a modal
scheme to determine whether the MANE device should
maintain separately the view list for texture view compo-
nents (i.e., a list of texture view components needed for
decoding the target output views) and the view list for depth
view components (i.e., a list of depth view components for
decoding the target output views). For example, in a first
sub-bitstream extraction mode, the MANE device may
implement the sub-bitstream extraction process defined in
the current MVC+D specification, and in a second sub-
bitstream extraction mode, the MANE device may imple-
ment the sub-bitstream extraction process where the MANE
device maintains a list of texture view components for
decoding the target output views and a separate list of depth
view components for decoding the target output views.

In the first sub-bitstream extraction mode (e.g., the self-
complete sub-bitstream extraction mode), if the texture view
component is needed, the MANE device may output both
the texture view component and the depth view component
in the sub-bitstream, even if the depth view component is not
needed, and vice-versa. In some examples, the external
means (e.g., the software, firmware, or hardware unit) of the
MANE device may determine that the MANE device should
extract the bitstream in accordance with the first mode, if the
output sub-bitstream is required to be “fully extractable”
(i.e., if one view has both texture and depth, all views must
have both texture and depth). Extracting the bitstream in
accordance with the first sub-bitstream extraction mode may

10

15

20

25

30

35

40

45

50

55

60

65

34

be beneficial if the bitstream extraction is performed by a
streaming server (e.g., server device 102) or an intermediate
network element (e.g., routing devices 104 and/or transcod-
ing device 106) and any subset of the views included in the
output may be requested as the target output views. In other
words, because any combination of the views may be needed
for output, it may be beneficial for the MANE device to
ensure that the output sub-bitstream is fully extractable.

In some examples, the external means may determine that
the second sub-bitstream extraction mode (e.g., the inter-
mediate sub-bitstream extraction mode) is a more appropri-
ate manner in which the MANE device should implement
the sub-bitstream extraction. For example, the external
means may receive information indicating the target output
views from the entity that is the end user of the video (e.g.,
destination device 14 or client device 108). In this example,
the external means may select the second sub-bitstream
extraction mode as the manner in which the MANE device
performs the sub-bitstream extraction.

As another example, the entity that is the end user of the
video may never request for a target output view that is not
in the operation point extracted from an initial extraction.
For instance, server device 102 may perform an initial
extraction that results in a sub-bitstream with characteristics
defined by the operation point. Transcoding device 106 may
perform additional extraction. In this example, if the entity
that is the end user of the video is not going to request a view
that was included as part of the extraction process performed
by server device 102, then the external means may select the
second sub-bitstream extraction mode as the manner in
which the MANE device performs the sub-bitstream extrac-
tion (e.g., by keeping separate lists for the texture view
components and the depth view components, rather than a
single list of view components that includes both the texture
view components and the depth view components).

In some examples, in addition to keeping separate lists for
the texture view components and the depth view compo-
nents so that only the texture view components or depth
view components that are needed for decoding the target
output views are outputted in the sub-bitstream, the MANE
device may further remove more view components or NAL
units or parts of NAL units that are not needed for decoding
the target output views. This may be part of the optimal
sub-bitstream extraction technique. For example, video
encoder 20 may indicate such additional view components
by the non-required view component SEI message or by the
inter_view_flag in the NAL unit header. Such NAL units
may be include non-VCL NAL units such as sequence
parameter set (SPS), picture parameter set (PPS) NAL units,
and SEI NAL units. The parts of the NAL units may include
SEI messages included in the SEI NAL units.

In some examples, the removal of additional view com-
ponents, NAL units, or parts of NAL units may be a third
sub-bitstream extraction mode that the external means can
select. In some examples, the example of the removal of
additional view components, NAL units, or parts of NAL
units may be an alternative to the second sub-bitstream
extraction mode described above.

As described above, the external means may select
between the first sub-bitstream extraction mode (e.g., self-
complete sub-bitstream extraction mode), the second sub-
bitstream extraction mode (e.g., intermediate sub-bitstream
extraction mode), or the third sub-bitstream extraction mode
(e.g., optimal sub-bitstream extraction mode). For example,
in the self-complete sub-bitstream extraction mode, video
decoder 30 may receive sufficient video data in the output
sub-bitstream to decode the target output views, as well as

US 9,479,779 B2

35

one or more additional views, but fewer than all the views.
In the optimal sub-bitstream extraction mode, video decoder
30 may receive sufficient video data in the output sub-
bitstream to decode only the target output views, and pos-
sibly no other views.

In one example of the intermediate sub-bitstream extrac-
tion mode, video decoder 30 may receive sufficient video
data in the output sub-bitstream to decode the target output
views, and part of the view components of the views (e.g.,
either the texture view component or the depth view com-
ponent, but not both). In another example of the intermediate
sub-bitstream extraction mode, video decoder 30 may
receive sufficient video data in the output sub-bitstream to
decode the target output views, and some of the views, but
not all of the views.

In the techniques described in this disclosure, the external
means may utilize various criteria to select a sub-bitstream
extraction mode. As one example, the external means may
determine whether any subset of views needs to be fully
extractable, and if so, may select the self-complete sub-
bitstream extraction mode. As one example, the external
means may determine whether the device that is to receive
the sub-bitstream should only receive enough video data to
decode particular target output views (e.g., if the device
requested for particular target output views, if the capabili-
ties of the device that is to receive the sub-bitstream limits
the number of views, or based on the bandwidth availabil-
ity), and may select the optimal sub-bitstream extraction
mode. As one example, if there is sufficient bandwidth and
video decoder 30 is capable of parsing syntax elements so
that video decoder 30 is capable of handling a sub-bitstream
that only includes texture view components of views and not
depth view components (or vice-versa), then the external
means may select one of the intermediate sub-bitstream
extraction modes. The external means may utilize other
criteria to select the appropriate extraction mode, and the
above criteria for selecting an extraction mode is provided
for purposes of illustration only.

If the external means is not available, then the MANE unit
may be configured to utilize the techniques of one of these
modes as the default mode. For instance, the second sub-
bitstream extraction mode may be the default mode if the
external means is not available. Alternatively, the first sub-
bitstream mode may be the default mode if the external
means is not available.

The above described various modes of sub-bitstream
extraction for examples where the video data includes depth
data (e.g., depth views). However, for some video coding
standards, such as the MVC extension to H.264/AVC, there
are no depth data. For instance, there may only be a view
component rather than two components the view component
(e.g., only a view component rather than a texture view
component and a depth view component). The techniques
described in this disclosure may be applicable to cases
where there is no depth data.

As one example, one of the plurality of sub-bitstream
extraction modes may be a self-complete sub-bitstream
extraction mode for video data that does not include depth
data. When the external means selects the self-complete
sub-bitstream extraction mode for video data that does not
include depth data, the MANE device may extract all view
components from a view that is needed for decoding the
target output views.

As another example, one of the plurality of sub-bitstream
extraction modes may be an optimal sub-bitstream extrac-
tion mode for video data that does not include depth data.
When the external means selects the optimal sub-bitstream

10

15

20

25

30

40

45

50

55

60

65

36

extraction mode for video data that does not include depth
data, the MANE device may extract only view components
from a view that are needed for decoding the target output
views, and no view components from the view that are not
needed for decoding the target output views.

Similarly, in the techniques described in this disclosure,
there may be various sub-bitstream extraction modes for
scalable video coding. As one example, one of the plurality
of sub-bitstream extraction modes may be a self-complete
sub-bitstream extraction mode for scalable video coding.
When the external means selects the self-complete sub-
bitstream extraction mode for scalable video coding, the
MANE device may extract all pictures of a layer when the
layer is needed for decoding the target output layers.

As another example, one of the plurality of sub-bitstream
extraction modes may be an optimal sub-bitstream extrac-
tion mode for scalable video coding. When the external
means selects the optimal sub-bitstream extraction mode for
scalable video coding, the MANE device may extract only
pictures of a layer that are needed for decoding the target
output layers.

As described above, the techniques described in this
disclosure may be applicable for various multiview coding
standards. To assist with understanding, the following
describes some manners in which the techniques may be
implemented in accordance with the MVC+D video coding
specification and the MVC video coding specification. The
description of the manner in which the techniques described
in this disclosure may be implemented with respect to the
MVC+D video coding specification and the MVC video
coding specification is provided to ease with understanding
and should not be considered limiting. The techniques
described in this disclosure may be applicable to MV-
HEVC, 3D-HEVC, or scalable video coding based on the
HEVC standard.

As described above, the techniques described in this
disclosure allow for a selection between different techniques
for sub-bitstream extraction. To achieve such selection of
different techniques of sub-bitstream extraction, this disclo-
sure may utilize an extraction mode variable referred to as
“extractionMode.”

For example, for the sub-bitstream extraction process for
MVC+D, it may be requirement of bitstream conformance
that any sub-bitstream that is the output of the process
specified in this technique with extractionMode equal to any
value in range of 0 to 3, inclusive, depthPresentFlag equal to
0 or 1, pldTarget (priority_id target value) equal to any value
in the range of 0 to 63, inclusive, tIdTarget (temporal_id or
temporallD target value) equal to any value in the range of
0 to 7, inclusive, viewldTargetList consisting of any one or
more values of viewldTarget identifying the views in the
bitstream may be conforming to the MVC+D standard.

The depthPresentFlag equal to 0 or 1 may indicate
whether the depth view component is part of the view
component. The variable pldTarget, tIdTarget, viewldTar-
getList, the definition of conforming bitstream, and condi-
tions on operation points described above with respect to the
current MVC+D specification are applicable here as well.

In the techniques described in this disclosure for MVC+D,
in addition to the variables depthPresentFlagTarget (when
present), pldTarget (when present), tldTarget (when pres-
ent), and a list viewldTargetList consisting of one or more
values of viewldTarget (when present), all these variables
are described above, an input to the sub-bitstream extraction
process may be the extractionMode variable (when present).
As above, the output of the sub-bitstream extraction process
may be the sub-bitstream and the list of VOIdx and VIdx-

US 9,479,779 B2

37

List. When extractionMode is not present as an input, the
MANE may infer the value of extractionMode to be 0. When
extractionMode is present, an external means, not necessar-
ily defined the video coding specification, may determine
the value of extractionMode, as described above. The values
of the other variables that are the input of this sub-bitstream
extraction process for MVC+D, when not present, may be
inferred as described above.

In this example, if the external means determines that the
value of the variable extractionMode is 0, the MANE device
may implement the “self-complete sub-bitstream extraction”
technique (i.e., the value of 0 for the variable extraction-
Mode refers to the self-complete extraction technique). If the
external means determines that the value of the variable
extractionMode is 1, the MANE device may implement the
“optimal sub-bitstream extraction” technique (i.e., the value
of 1 for the variable extractionMode refers to the optimal
extraction technique).

If the external means determines that the value of the
variable extractionMode is 2, the MANE device may imple-
ment one example of the “intermediate sub-bitstream extrac-
tion” technique (i.e., the value of 2 for the variable extrac-
tionMode refers to a first example of the intermediate
sub-bitstream extraction technique).

If the external means determines that the value of the
variable extractionMode is 3, the MANE device may imple-
ment another example of the “intermediate self-complete
extraction” technique (i.e., the value of 3 for the variable
extractionMode refers to a second example of the interme-
diate self-complete extraction technique). This second
example of the intermediate self-complete extraction tech-
nique may be similar to sub-bitstream extraction technique
specified in the latest draft of the 3D-AVC standard. For
instance, in this second example of the intermediate self-
complete extraction technique, if a texture view component
or a depth view component of a view is required, but not
both, the MANE device may still include both the texture
view component and the depth view component.

Also, in this second example of the intermediate self-
complete extraction technique, some of the texture view
components and depth view components of a view may not
be needed, but other may be needed. If neither the depth
view component nor the texture view component of a view
is needed, then the MANE device may not include either of
the texture view component or depth view component. For
instance, in the self-complete extraction technique, even if
neither the texture view component nor depth view compo-
nent of a view is needed, the sub-bitstream may include both
the texture view component and the depth view component
so that the view is fully extractable. In this example, for the
intermediate sub-bitstream extraction technique, if neither
the texture view component and the depth view component
of the view is needed, then neither is included in the
sub-bitstream, but if one of the target view component or the
depth view component of the view is needed, then both are
included in the sub-bitstream, regardless of whether both the
texture view component and depth view component are
needed.

As described above, the value of the variable extraction-
Mode may define whether the MANE device implements
sub-bitstream extraction for the MVC+D video coding
specification. The manner in which the MANE device
implements the various example sub-bitstream extraction
techniques for MVC+D is described in more detail below.

The above described MVC+D, the following describes
MVC. For instance, the MVC, there may be no depth
component, and therefore, the depthPresentFlagTarget may

10

15

20

25

30

35

40

45

50

55

60

65

38

not be necessary. Also, the value of the variable extraction-
Mode may be limited to O or 1, because there may be fewer
extraction modes since there may be no depth view com-
ponent in MVC. For example, one of the extraction modes
may be a self-complete sub-bitstream extraction mode for
video data that does include depth data, as described above.
Another one of the extraction modes may be an optimal
sub-bitstream extraction mode for video data that does not
include depth data, as described above.

For MVC, it may be a requirement of bitstream confor-
mance that any sub-bitstream that is the output of the process
specified in the technique with extractionMode equal to any
value in range of 0 to 1, inclusive, pldTarget (priority_id
target value) equal to any value in the range of 0 to 63,
inclusive, tldTarget (temporal_id or temporallD target
value) equal to any value in the range of 0 to 7, inclusive,
viewldTargetList consisting of any one or more values of
viewldTarget identifying the views in the bitstream may be
conforming to the MVC standard. The variable pldTarget,
tldTarget, viewldTargetList, the definition of conforming
bitstream, and conditions on operation points described
above with respect to the current MVC specification are
applicable here as well.

In the techniques described in this disclosure for MVC, in
addition to the variables pIdTarget (when present), tldTarget
(when present), and a list viewldTargetList consisting of one
or more values of viewldTarget (when present), all these
variables are described above, an input to the sub-bitstream
extraction process may be the extractionMode variable
(when present). As above, the output of the sub-bitstream
extraction process may be the sub-bitstream and the list of
VOIdx and VIdxList. When extractionMode is not present
as an input, the MANE may infer the value of extraction-
Mode to be 0. When extractionMode is present, an external
means, not necessarily defined the video coding specifica-
tion, may determine the value of extractionMode, as
described above. The values of the other variables that are
the input of this sub-bitstream extraction process for MVC,
when not present, may be inferred as described above.

In some examples, for MVC, if extractionMode is equal
to 1, the MANE device may derive the sub-bitstream by
applying the steps specified in the current MVC specifica-
tion in sequential order. If extractionMode is equal to 0, the
MANE device may derive the sub-bitstream by applying the
steps described further below. For example the following
first describes techniques for implementing the various
modes of MVC+D, and then describes techniques for imple-
menting a sub-bitstream extraction mode for MVC that is
different than the techniques in the current MVC specifica-
tion.

The above described example modes that the MANE
device may implement for purposes of sub-bitstream extrac-
tion in MVC+D. For instance, the MANE device may derive
the target view list as part of the sub-bitstream. To imple-
ment the example modes for sub-bitstream extraction, this
disclosure describes some modifications to the current
MVC+D video coding specification.

For instance, subclause A.1.1.4 of the MVC+D video
coding specification is directed to the Derivation process for
required anchor view components. For this section, the
MVC specification subclause H.8.5.1 may apply twice, once
with the “view component” substituted by “texture view
component” and with “required for anchor” substituted with
“required for anchor texture” and once with the “view
component” substituted by “depth view component” and
with “required for anchor” substituted with “required for
anchor depth.”

US 9,479,779 B2

39

Subclause A.1.1.5 of the MVC+D video coding specifi-
cation is directed to the Derivation process for required
non-anchor view components. For this section, the MVC
specification subclause H.8.5.2 may apply twice, once with
the “view component™ substituted by “texture view compo-
nent” and with “required for anchor” substituted by
“required for anchor texture” and once with the “view
component” substituted with “depth view component” and
with “required for anchor” substituted with “required for
anchor depth.”

The following describes examples of the manner in which
the MANE device may implement the optimal extraction
mode for MVC+D (e.g., where the minimize size of the
sub-bitstream is maintained so that only the video data
needed to decode the target output views is included in the
sub-bitstream). For instance, the value of the extraction-
Mode variable may be 1. The depthPresentFlagTarget may
be equal to O or 1.

The MANE device may implement a substantially similar
extraction technique as what is currently described in the
MVC+D video coding specification, and which is described
above in detail. However, there may be some differences.
For example, as described above for the current MVC+D
specification, two of the conditions for marking all VCL
NAL units and filler data NAL units as “to be removed from
bitstream” in the current MVC+D specification are:
anchor_pic_flag is equal to 1 and view_id is not marked as
“required for anchor” and anchor_pic_flag is equal to 0 and
view_id is not marked as “required for non-anchor.” For the
optimal extraction mode of MVC+D, these two conditions
may be changed to: anchor_pic_flag is equal to 1,
nal_unit_type is not 21, and view_id is not marked as
“required for anchor texture” and anchor_pic_flag is equal to
0, nal_unit_type is not 21, and view_id is not marked as
“required for non-anchor texture.”

Moreover, for the optimal extraction mode of MVC+D,
the following two conditions may be added for when al VCL
NAL units and filler data NAL units may be marked as “to
be removed from the bitstream.” The first additional condi-
tion may be that: anchor_pic_flag is equal to 1,
nal_unit_type is 21, and view_id is not marked as “required
for anchor depth.” The second additional condition may be
that: anchor_pic_flag is equal to 0, nal_unit_type is 21, and
view_id is not marked as “required for non-anchor depth.”
The other steps for sub-bitstream extraction may be same as
described above for the current sub-bitstream extraction in
MVC+D.

The following describes examples of the manner in which
the MANE device may implement an example of the self-
complete intermediate extraction mode for MVC+D. For
instance, the value of the extractionMode variable may be 2.
The depthPresentFlagTarget may be equal to 0 or 1.

In this example, the texture and depth view components
of the target output views may have different dependency.
For instance, the texture view components of the target
output views may be inter-view predicted from different
target views than the depth view components of the target
output views. In other words, both the texture view com-
ponents and the depth view components from the views may
not be included in the sub-bitstream, and only the needed
texture view components or depth view components of the
views are included in the output sub-bitstream. Also, in
some examples, after each extraction, the remaining sub-
bitstream may be further extracted to support a target output
view list. This target output view list may be a subset or the
same as the target output view list of the original input
bitstream during the first sub-bitstream extraction.

10

15

20

25

30

35

40

45

50

55

60

65

40

In this example for the intermediate sub-bitstream extrac-
tion technique, for each view, if its view_id is marked as
“required for anchor texture” or “required for non-anchor
texture,” the view_id is marked as “required for texture.”
Also, for each view, if its view_id is marked as “required for
anchor depth” or “required for non-anchor depth,” the
view_id is marked as “required for depth.” As above, the
view_id of the base view may always be marked as
“required for texture.”

For the intermediate sub-bitstream extraction technique,
the MANE device may implement a substantially similar
extraction technique as what is currently described in the
MVC+D video coding specification, and which is described
above in detail. However, there may be some differences.
For example, as described above for the current MVC+D
specification, three of the conditions for marking all VCL
NAL units and filler data NAL units as “to be removed from
bitstream” in the current MVC+D specification are:
anchor_pic_flag is equal to 1 and view_id is not marked as
“required for anchor,” anchor_pic_flag is equal to 0 and
view_id is not marked as “required for non-anchor,” and
nal_ref_idc is equal to 0 and inter_view_flag is equal to O
and view_id is not equal to any value in the list viewldTar-
getList.

For the intermediate self-completeness extraction tech-
nique, these three conditions may be modified as follows. In
the following, strikethrough indicates deletion relative to the
current proposed standard, and is used to better understand
when a condition is deleted. The first condition may be
modified to anchor pic flag is equal to 1 nal_unit_type is not
21 and view_id is not marked as “required for anchor
texture.” The second condition of anchor_pic_flag is equal
to 0 may be removed (i.e., anchor_pic_flag is equal to 0,
nal_unit_type is not 21 and view_id is not marked as
“required for non-anchor texture”). The third condition of
nal_ref_idc is equal to 0 may also be removed (i.e., nal_re-
f_idc is equal to O and inter_view_flag is equal to O and
view_id is not equal to any value in the list viewldTar-
getList). In the above text, bold and italics is used to indicate
removal of language from the condition as the modification
to the respective conditions.

For the intermediate sub-bitstream extraction technique,
the following condition may be added for when all VCL
NAL units and filler data NAL units are “to be removed from
the bitstream.” The condition may be nal_unit_type is 21
and view_id is not marked as “required for depth.” The other
steps for sub-bitstream extraction may be same as described
above for the current sub-bitstream extraction in MVC+D.

The following describes examples of the manner in which
the MANE device may implement an example of the self-
complete extraction mode for MVC+D. For instance, the
value of the extractionMode variable may be 0. In this
example, the texture view component and the depth view
component of one view may be jointly considered as one
view component and both may be kept in the extracted
sub-bitstream once either texture or depth view component
is required for output or decoding.

In this example, for each view, if its view_id is marked as
“required for anchor texture,” “required for non-anchor
texture,” “required for anchor depth,” or “required for
non-anchor depth,” the view_id may be marked as
“required.” Also, as above, the base view may always be
marked as “required.”

For the self-complete sub-bitstream extraction technique,
the MANE device may implement a substantially similar
extraction technique as what is currently described in the
MVC+D video coding specification, and which is described

US 9,479,779 B2

41

above in detail. However, there may be some differences.
For example, as described above for the current MVC+D
specification, three of the conditions for marking all VCL
NAL units and filler data NAL units as “to be removed from
bitstream” in the current MVC+D specification are:
anchor_pic_flag is equal to 1 and view_id is not marked as
“required for anchor,” anchor_pic_flag is equal to 0 and
view_id is not marked as “required for non-anchor,” and
nal_ref idc is equal to 0 and inter_view_flag is equal to 0
and view_id is not equal to any value in the list viewlIdTar-
getList.

For the self-complete extraction technique, these three
conditions may be modified as follows. In the following,
strikethrough indicates deletion relative to the current pro-
posed standard, and is used to better understand when a
condition is deleted. The first condition may be modified to
anchor_pic_flag is equal to 1, view_id is not marked as
“required for texture.” The second condition of anchor_
pic_flag is equal to 0 may be removed (i.e., anchor_pic_flag
is equal to 0, view_id is not marked as “required for
non-anchor”). The third condition of nal_ref_idc is equal to
0 may also be removed (i.e., nal_ref_idc is equal to 0 and
inter_view_flag is equal to 0 and view_id is not equal to any
value in the list viewldTargetList). In the above text, bold
and italics is used to indicate removal of language from the
condition as the modification to the respective conditions.

For the self-complete sub-bitstream extraction technique,
the following condition may be added for when all VCL
NAL units and filler data NAL units are “to be removed from
the bitstream.” The condition may be nal_unit_type is 21
and view_id is not marked as “required for depth.” The other
steps for sub-bitstream extraction may be same as described
above for the current sub-bitstream extraction in MVC+D.

The above described examples manners in which to
implement the sub-bitstream extraction modes for MVC+D.
The following describes examples manners in which to
implement the sub-bitstream extraction modes for MVC.
One of the modes may be sub-bitstream extraction technique
defined in the current proposed MVC specification, and the
MANE device may implement the sub-bitstream extraction
technique as defined in the current proposed MVC specifi-
cation, which generally includes 10 steps. The MANE
device may implement another sub-bitstream extraction
mode (e.g., if the following is the mode selected by the
external means) by implementing the following 11 steps
described after some general remarks with respect to the
sub-bitstream extraction process.

For each view, if the its view_id is marked as “required for
anchor,” “required for non-anchor,” the view_id is marked
as “required.” The view_id of the base layer is always
marked as “required.” For the sub-bitstream extraction pro-
cess, it may be a requirement of bitstream conformance that
any sub-bitstream that is the output of the process specified
in this subclause with pldTarget equal to any value in the
range of 0 to 63, inclusive, tldTarget equal to any value in
the range of 0 to 7, inclusive, viewldTargetList consisting of
any one or more viewldTarget’s identifying the views in the
bitstream, may be conforming to the standard.

As described above, a conforming bitstream contains one
or more coded slice NAL units with priority_id equal to 0
and temporal_id equal to 0. Also, it is possible that not all
operation points of sub-bitstreams resulting from the sub-
bitstream extraction process have an applicable level_idc or
level_idc[i]. In this case, each coded video sequence in a
sub-bitstream must still conform to one or more of the

10

15

20

25

30

35

40

45

50

55

60

65

42

profiles specified in Annex A and Annex H, but may not
satisfy the level constraints specified in subclauses A.3 and
H.10.2, respectively.

The inputs to this process are a variable pldTarget (when
present), a variable tldTarget (when present), and a list
viewldTargetList consisting of one or more viewldTarget’s
(when present). The outputs of this process are a sub-
bitstream and a list of VOIdx values VOIdxList. When
pldTarget is not present as input to this subclause, pldTarget
is inferred to be equal to 63. When tldTarget is not present
as input to this subclause, tIdTarget is inferred to be equal to
7. When viewldTargetList is not present as input to this
subclause, there may be one viewldTarget inferred in
viewldTargetList and the value of viewldTarget is inferred
to be equal to view_id of the base view.

In the following, strikethrough indicates deletion relative
to the current proposed standard, and is used to better
understand when a condition is deleted. The sub-bitstream is
derived by applying the following 11 operations in sequen-
tial order.

(1) Let VOIdxList be empty and minVOIdx be the VOIdx
value of the base view. (2) For each viewldTarget included
in viewldTargetList, invoke the process specified in sub-
clause H.8.5.1 with the viewldTarget as input. (3) For each
viewldTarget included in viewldTargetList, invoke the pro-
cess specified in subclause H.8.5.2 with the viewldTarget as
input. (4) For each view, if its view_id is marked as
“required for anchor,” “required for non-anchor,” and “the
view_id is marked as “required”.

The fifth step may be to mark all VCL NAL units and filler
data NAL units for which any of the following conditions is
true as “to be removed from the bitstream™: priority_id is
greater than pldTarget, temporal_id is greater than tIdTarget,
anchor pic flag is equal to 1 and view_id is not marked as
“required for anchor”, anchor_pic_flag is equal to 0 and
view_id is not marked as “required for non-anchor”, nal ref
idc is equal to 0 and inter view flag is equal to 0 and view
id is not equal to any value in the list OutputVOIdxList. The
sixth step may be to remove all access units for which all
VCL NAL units are marked as “to be removed from the
bitstream”. In the above text, bold and italics is used to
indicate removal of language from the condition as the
modification to the respective conditions.

The seventh step may be to remove all VCLL NAL units
and filler data NAL units that are marked as “to be removed
from the bitstream”. The eighth step may be that when
VOIdxList contains only one value of VOIdx that is equal to
minVOIdx, remove the following NAL units: all NAL units
with nal_unit_type equal to 14 or 15, all NAL units with
nal_unit_type equal to 6 in which the first SEI message has
payloadType in the range of 36 to 44, inclusive. In some
examples, when VOIdxList contains only one value of
VOIdx equal to minVOIdx, the sub-bitstream contains only
the base view or only a temporal subset of the base view.

The ninth step may be to let maxTId be the maximum
temporal_id of all the remaining VCL NAL units. Remove
all NAL units with nal_unit_type equal to 6 that only contain
SEI messages that are part of an MVC scalable nesting SEI
message with any of the following properties:
operation_point_flag is equal to 0 and all_view_componen-
ts_in_au_{flag is equal to 0 and none of sei_view_id[i] for all
i in the range of 0 to num_view_components_minusl,
inclusive, corresponds to a VOIdx value included in VOIdx-
List, operation_point_flag is equal to 1 and either
sei_op_temporal_id is greater than maxTId or the list of
sei_op_view_id[i] for all i in the range of 0 to num_
view_components_op_minus]1, inclusive, is not a subset of

US 9,479,779 B2

43

viewldTargetList (i.e., it is not ture that sei_op_view_id[i]
for any i in the range of 0 to num_view_components_
op_minusl, inclusive, is equal to a value in viewldTar-
getList).

The tenth step may be to remove each view scalability
information SEI message and each operation point not
present SEI message, when present. The eleventh step may
be that when VOIdxList does not contain a value of VOIdx
equal to minVOIdx, the view with VOIdx equal to the
minimum VOIdx value included in VOIdxList is converted
to the base view of the extracted sub-bitstream. An infor-
mative procedure that outlines key processing steps to create
a base view is described in H.8.5.5. When VOIdxList does
not contain a value of VOIdx equal to minVOIdx, the
resulting sub-bitstream according to the operation steps 1-9
above does not contain a base view that conforms to one or
more profiles specified in Annex A. In this case, by this
operation step, the remaining view with the new minimum
VOIdx value is converted to be the new base view that
conforms to one or more profiles specified in Annex A.

FIG. 5 is a block diagram illustrating an example video
encoder 20 that may implement the techniques described in
this disclosure. For example, video encoder 20 may encode
video data for multiview video. In some examples, video
encoder 20 may encode video data in accordance with the
H.264/AVC MVC extension, MVC+D, 3D-AVC,
MV-HEVC, 3D-HEVC, or scalable video coding based on
HEVC as a few examples. For purposes of illustration, the
techniques are described with respect to the HEVC standard.
Video encoder 20 may then output the encoded bitstream
that the MANE device receives and performs the sub-
bitstream extraction techniques described in this disclosure.

Video encoder 20 may perform intra-coding (e.g., intra-
prediction encoding) and inter-coding (e.g., inter-prediction
encoding) of video blocks within video slices, as well as
inter-view prediction encoding of video blocks from differ-
ent views. Intra-coding relies on spatial prediction to reduce
or remove spatial redundancy in video within a given video
frame or picture. Inter-coding relies on temporal prediction
to reduce or remove temporal redundancy in video within
adjacent frames or pictures of a video sequence. Inter-view
prediction refers to predicting the block from a picture in
another view. Intra-mode (I mode) may refer to any of
several spatial based compression modes. Inter-modes, such
as uni-directional prediction (P mode) or bi-prediction (B
mode), may refer to any of several temporal-based com-
pression modes.

In the example of FIG. 2, video encoder 20 includes a
partitioning unit 35, prediction processing unit 41, filter unit
63, reference picture memory 64, summer 50, transform
processing unit 52, quantization unit 54, and entropy encod-
ing unit 56. Prediction processing unit 41 includes motion
estimation unit 42, motion compensation unit 44, and intra
prediction unit 46. For video block reconstruction, video
encoder 20 also includes inverse quantization unit 58,
inverse transform unit 60, and summer 62. Filter unit 63 may
generally represent one or more loop filters such as a
deblocking filter, an adaptive loop filter (ALF), and a sample
adaptive offset (SAO) filter. Although filter unit 63 is shown
in FIG. 5 as being an in loop filter, in other configurations,
filter unit 63 may be implemented as a post loop filter, in
which case unfiltered data may be used in the coding loop.

As shown in FI1G. 5, video encoder 20 receives video data,
and partitioning unit 35 partitions the data into video blocks.
This partitioning may also include partitioning into slices,
tiles, or other larger units, as wells as video block partition-
ing, e.g., according to a quadtree structure of LCUs and

10

15

20

25

30

35

40

45

50

55

60

65

44

CUs. Video encoder 20 generally illustrates the components
that encode video blocks within a video slice to be encoded.
The slice may be divided into multiple video blocks (and
possibly into sets of video blocks referred to as tiles).
Prediction processing unit 41 may select one of a plurality
of possible coding modes, such as one of a plurality of intra
coding modes or one of a plurality of inter coding modes
(including inter-view prediction), for the current video block
based on error results (e.g., coding rate and the level of
distortion). Prediction processing unit 41 may provide the
resulting intra- or inter-coded block to summer 50 to gen-
erate residual block data and to summer 62 to reconstruct the
encoded block for use as a reference picture.

Intra prediction unit 46 within prediction processing unit
41 may perform intra-predictive coding of the current video
block relative to one or more neighboring blocks in the same
frame or slice as the current block to be coded to provide
spatial compression. Motion estimation unit 42 and motion
compensation unit 44 within prediction processing unit 41
perform inter-predictive coding of the current video block
relative to one or more predictive blocks in one or more
reference pictures to provide temporal compression.

Motion estimation unit 42 may be configured to determine
the inter-prediction mode for a video slice according to a
predetermined pattern for a video sequence. The predeter-
mined pattern may designate video slices in the sequence as
P slices or B slices. Motion estimation unit 42 and motion
compensation unit 44 may be highly integrated, but are
illustrated separately for conceptual purposes. Motion esti-
mation, performed by motion estimation unit 42, is the
process of generating motion vectors, which estimate
motion for video blocks. A motion vector, for example, may
indicate the displacement of a PU of a video block within a
current video frame or picture relative to a predictive block
within a reference picture.

A predictive block is a block that is found to closely match
the PU of the video block to be coded in terms of pixel
difference, which may be determined by sum of absolute
difference (SAD), sum of square difference (SSD), or other
difference metrics. In some examples, video encoder 20 may
calculate values for sub-integer pixel positions of reference
pictures stored in reference picture memory 64. For
example, video encoder 20 may interpolate values of one-
quarter pixel positions, one-eighth pixel positions, or other
fractional pixel positions of the reference picture. Therefore,
motion estimation unit 42 may perform a motion search
relative to the full pixel positions and fractional pixel
positions and output a motion vector with fractional pixel
precision.

Motion estimation unit 42 calculates a motion vector for
a PU of avideo block in an inter-coded (e.g., inter-prediction
encoded) slice by comparing the position of the PU to the
position of a predictive block of a reference picture. The
reference picture may be selected from a first reference
picture list (List 0) or a second reference picture list (List 1),
each of which identify one or more reference pictures stored
in reference picture memory 64. Motion estimation unit 42
sends the calculated motion vector to entropy encoding unit
56 and motion compensation unit 44.

Motion compensation, performed by motion compensa-
tion unit 44, may involve fetching or generating the predic-
tive block based on the motion vector determined by motion
estimation, possibly performing interpolations to sub-pixel
precision. Upon receiving the motion vector for the PU of
the current video block, motion compensation unit 44 may
locate the predictive block to which the motion vector points
in one of the reference picture lists. Video encoder 20 forms

US 9,479,779 B2

45

a residual video block by subtracting pixel values of the
predictive block from the pixel values of the current video
block being coded, forming pixel difference values. The
pixel difference values form residual data for the block, and
may include both luma and chroma difference components.
Summer 50 represents the component or components that
perform this subtraction operation. Motion compensation
unit 44 may also generate syntax elements associated with
the video blocks and the video slice for use by video decoder
30 in decoding the video blocks of the video slice.

Intra prediction unit 46 may intra-predict a current block
(intra-prediction encode), as an alternative to the inter-
prediction performed by motion estimation unit 42 and
motion compensation unit 44, as described above. In par-
ticular, intra prediction unit 46 may determine an intra-
prediction mode to use to encode a current block. In some
examples, intra prediction unit 46 may encode a current
block using various intra-prediction mode (e.g., during
separate encoding passes), and intra prediction unit 46 may
select an appropriate intra-prediction mode to use from the
tested modes. For example, intra prediction unit 46 may
calculate rate-distortion values using a rate-distortion analy-
sis for the various tested intra-prediction modes, and select
the intra-prediction mode having the best rate-distortion
characteristics among the tested modes. Rate-distortion
analysis generally determines an amount of distortion (or
error) between an encoded block and an original, unencoded
block that was encoded to produce the encoded block, as
well as a bit rate (that is, a number of bits) used to produce
the encoded block. Intra prediction unit 46 may calculate
ratios from the distortions and rates for the various encoded
blocks to determine which intra-prediction mode exhibits
the best rate-distortion value for the block.

In any case, after selecting an intra-prediction mode for a
block, intra prediction unit 46 may provide information
indicative of the selected intra-prediction mode for the block
to entropy encoding unit 56. Entropy encoding unit 56 may
encode the information indicating the selected intra-predic-
tion mode in accordance with the techniques of this disclo-
sure. Video encoder 20 may include in the transmitted
bitstream configuration data, which may include a plurality
of intra-prediction mode index tables and a plurality of
modified intra-prediction mode index tables (also referred to
as codeword mapping tables), definitions of encoding con-
texts for various blocks, and indications of a most probable
intra-prediction mode, an intra-prediction mode index table,
and a modified intra-prediction mode index table to use for
each of the contexts.

After prediction processing unit 41 generates the predic-
tive block for the current video block via either inter-
prediction or intra-prediction, video encoder 20 forms a
residual video block by subtracting the predictive block
from the current video block. The residual video data in the
residual block may be included in one or more TUs and
applied to transform processing unit 52. Transform process-
ing unit 52 transforms the residual video data into residual
transform coefficients using a transform, such as a discrete
cosine transform (DCT) or a conceptually similar transform.
Transform processing unit 52 may convert the residual video
data from a pixel domain to a transform domain, such as a
frequency domain.

Transform processing unit 52 may send the resulting
transform coefficients to quantization unit 54. Quantization
unit 54 quantizes the transform coefficients to further reduce
bit rate. The quantization process may reduce the bit depth
associated with some or all of the coefficients. The degree of
quantization may be modified by adjusting a quantization

10

20

40

45

46

parameter. In some examples, quantization unit 54 may then
perform a scan of the matrix including the quantized trans-
form coefficients. Alternatively, entropy encoding unit 56
may perform the scan.

Following quantization, entropy encoding unit 56 entropy
encodes the quantized transform coefficients. For example,
entropy encoding unit 56 may perform context adaptive
variable length coding (CAVLC), context adaptive binary
arithmetic coding (CABAC), syntax-based context-adaptive
binary arithmetic coding (SBAC), probability interval par-
titioning entropy (PIPE) coding or another entropy encoding
methodology or technique. Following the entropy encoding
by entropy encoding unit 56, the encoded bitstream may be
transmitted to video decoder 30, or archived for later trans-
mission or retrieval by video decoder 30. Entropy encoding
unit 56 may also entropy encode the motion vectors and the
other syntax elements for the current video slice being
coded.

Inverse quantization unit 58 and inverse transform unit 60
apply inverse quantization and inverse transformation,
respectively, to reconstruct the residual block in the pixel
domain for later use as a reference block of a reference
picture. Motion compensation unit 44 may calculate a ref-
erence block by adding the residual block to a predictive
block of one of the reference pictures within one of the
reference picture lists. Motion compensation unit 44 may
also apply one or more interpolation filters to the recon-
structed residual block to calculate sub-integer pixel values
for use in motion estimation. Summer 62 adds the recon-
structed residual block to the motion compensated predic-
tion block produced by motion compensation unit 44 to
produce a reference block for storage in reference picture
memory 64. The reference block may be used by motion
estimation unit 42 and motion compensation unit 44 as a
reference block to inter-predict a block in a subsequent video
frame or picture.

FIG. 6 is a block diagram illustrating an example video
decoder 30 that may implement the techniques of this
disclosure. For example, video decoder 30 may receive a
sub-bitstream from the MANE device. The sub-bitstream
that video decoder 30 receives may have been extracted
from the bitstream utilizing techniques described in this
disclosure. Video decoder 30 may decode the sub-bitstream
to reconstruct the target output views.

In the example of FIG. 6, video decoder 30 includes an
entropy decoding unit 80, prediction processing unit 81,
inverse quantization unit 86, inverse transform unit 88,
summer 90, filter unit 91, and reference picture memory 92.
Prediction processing unit 81 includes motion compensation
unit 82 and intra prediction unit 84. Video decoder 30 may,
in some examples, perform a decoding pass generally recip-
rocal to the encoding pass described with respect to video
encoder 20 from FIG. 5.

During the decoding process, video decoder 30 receives
an encoded video bitstream that represents video blocks of
an encoded video slice and associated syntax elements from
video encoder 20. Video decoder 30 may receive the
encoded video bitstream from a network entity 29. Network
entity 29 may, for example, be a server, a media-aware
network element (MANE), a video editor/splicer, or other
such device configured to implement one or more of the
techniques described above. As described above, some of
the techniques described in this disclosure may be imple-
mented by network entity 29 prior to the transmission of the
encoded video bitstream to video decoder 30. In some video
decoding systems, network entity 29 and video decoder 30
may be parts of separate devices, while in other instances,

US 9,479,779 B2

47
the functionality described with respect to network entity 29
may be performed by the same device that comprises video
decoder 30.

Entropy decoding unit 80 of video decoder 30 entropy
decodes the bitstream to generate quantized coeflicients,
motion vectors, and other syntax elements. Entropy decod-
ing unit 80 forwards the motion vectors and other syntax
elements to prediction processing unit 81. Video decoder 30
may receive the syntax elements at the video slice level
and/or the video block level.

When the video slice is coded as an intra-coded (I) slice,
intra prediction unit 84 of prediction processing unit 81 may
generate prediction data for a video block of the current
video slice based on a signaled intra prediction mode and
data from previously decoded blocks of the current frame or
picture. When the video frame is coded as an inter-coded
(i.e., B or P) slice, motion compensation unit 82 of predic-
tion processing unit 81 produces predictive blocks for a
video block of the current video slice based on the motion
vectors and other syntax elements received from entropy
decoding unit 80. The predictive blocks may be produced
from one of the reference pictures within one of the refer-
ence picture lists. Video decoder 30 may construct the
reference frame lists, List 0 and List 1, using default
construction techniques based on reference pictures stored in
reference picture memory 92.

Motion compensation unit 82 determines prediction infor-
mation for a video block of the current video slice by parsing
the motion vectors and other syntax elements, and uses the
prediction information to produce the predictive blocks for
the current video block being decoded. For example, motion
compensation unit 82 uses some of the received syntax
elements to determine a prediction mode (e.g., intra- or
inter-prediction) used to code the video blocks of the video
slice, an inter-prediction slice type (e.g., B slice or P slice),
construction information for one or more of the reference
picture lists for the slice, motion vectors for each inter-
encoded video block of the slice, inter-prediction status for
each inter-coded video block of the slice, and other infor-
mation to decode the video blocks in the current video slice.

Motion compensation unit 82 may also perform interpo-
lation based on interpolation filters. Motion compensation
unit 82 may use interpolation filters as used by video
encoder 20 during encoding of the video blocks to calculate
interpolated values for sub-integer pixels of reference
blocks. In this case, motion compensation unit 82 may
determine the interpolation filters used by video encoder 20
from the received syntax elements and use the interpolation
filters to produce predictive blocks.

Inverse quantization unit 86 inverse quantizes (i.e., de-
quantizes) the quantized transform coefficients provided in
the bitstream and decoded by entropy decoding unit 80. The
inverse quantization process may include use of a quanti-
zation parameter calculated by video encoder 20 for each
video block in the video slice to determine a degree of
quantization and, likewise, a degree of inverse quantization
that should be applied. Inverse transform unit 88 applies an
inverse transform (e.g., an inverse DCT, an inverse integer
transform, or a conceptually similar inverse transform pro-
cess) to the transform coefficients in order to produce
residual blocks in the pixel domain.

After motion compensation unit 82 generates the predic-
tive block for the current video block based on the motion
vectors and other syntax elements, video decoder 30 forms
a decoded video block by summing the residual blocks from
inverse transform unit 88 with the corresponding predictive
blocks generated by motion compensation unit 82. Summer

10

20

25

40

45

50

55

48

90 represents the component or components that perform
this summation operation. If desired, loop filters (either in
the coding loop or after the coding loop) may also be used
to smooth pixel transitions, or otherwise improve the video
quality. Filter unit 91 may represent one or more loop filters
such as a deblocking filter, an adaptive loop filter (ALF), and
a sample adaptive offset (SAO) filter. Although filter unit 91
is shown in FIG. 6 as being an in loop filter, in other
configurations, filter unit 91 may be implemented as a post
loop filter. The decoded video blocks in a given frame or
picture are then stored in reference picture memory 92,
which stores reference pictures used for subsequent motion
compensation. Reference picture memory 92 also stores
decoded video for later presentation on a display device,
such as display device 31 of FIG. 1.

FIG. 7 is a flowchart illustrating an example technique in
accordance with one or more examples described in this
disclosure. For example, one or more processors of a MANE
device may receive a bitstream of encoded video data (200).
Video encoder 20 may have encoded the bitstream with
video data for multiview coding or scalable video coding.
The MANE device may be a device intermediate to video
encoder 20 and video decoder 30 such as a streaming server
or an intermediate device in network 100 such as routing
devices 104 or transcoding device 106. In some examples,
the one or more processors may be processor(s) 110.

The one or more processors may select a sub-bitstream
extraction mode from a plurality of sub-bitstream extraction
modes (202). Each of the sub-bitstream extraction modes
may define a manner in which to extract coded pictures from
views or layers from the bitstream to allow decoding of
target output views or target output layers. Each coded
picture comprises one or more video coding layer network
abstraction layer (VCL NAL) units of a view or a layer
within an access unit. For example, each coded picture of a
view is one of a view component, a texture view component,
and a depth view component. For example, the coded
pictures may comprise view components of views (e.g.,
texture view components and/or depth view components or
pictures of layers).

In some examples, the one or more processors may
receive the sub-bitstream extraction mode from an external
means. The external means may be a hardware unit or a
software unit executing on the hardware unit that is external
to a video decoder (e.g., video decoder 30). For example, the
external means may be firmware or software, which con-
forms to an application processing interface (API), execut-
ing on the one or more processors. The external means may
be a unit external to a video decoder (e.g., video decoder 30)
that sets one or more variables that each define a sub-
bitstream extraction mode and selects a value from the one
or more variables, wherein the value is provided to the video
decoder as an input.

For example, the one or more processors may select a
self-complete sub-bitstream extraction mode if the extrac-
tion for output is being performed by a streaming server.
This self-complete sub-bitstream extraction mode may be a
mode in which the one or more processors extract for output
both texture view components and depth view components
of the views even if both the texture view components and
the depth view components of the views are not needed for
decoding the target output views.

The one or more processors may select a second, different
sub-bitstream extraction mode (e.g., an example of the
intermediate sub-bitstream extraction mode) based on one or
more of available bandwidth, characteristics of the device
receiving the sub-bitstream, and characteristics of a display

US 9,479,779 B2

49

of the device receiving the sub-bitstream. In this example,
the one or more processors may maintain a list of texture
view components for view components of the views that are
to be extracted, and maintain a separate list of depth view
components for view components of the views that are to be
extracted. In the intermediate sub-bitstream extraction
mode, only the texture view components or the depth view
components that are needed to decode the target output
views are extracted for output.

The one or more processors may select a third, different
sub-bitstream extraction mode (e.g., the optimal sub-bit-
stream extraction mode) that extracts the minimum amount
of video data needed to decode the target output views. For
example, the one or more processors may select the optimal
sub-bitstream extraction mode if the device receiving the
sub-bitstream requests for specific target output views. In
this example the one or more processors may extract for
output the minimum amount of data needed to decode the
target output views and no other views.

The one or more processors may extract, from the bit-
stream, a sub-bitstream in the manner defined by the selected
sub-bitstream extraction mode (204). For example, the one
or more processors may extract the sub-bitstream using the
self-complete sub-bitstream extraction mode in which the
one or more processors may extract for output both the depth
view components and the texture view components of the
views even if both the depth view components and the
texture view components of the target views are not needed
for decoding the target output views. As another example,
the one or more processor may extract the sub-bitstream
using the intermediate sub-bitstream extraction mode in
which the one or more processors may extract for output
only the texture view components of the views if the depth
view component of the target views are not needed for
decoding the target output views, or extract for output only
the depth view components of the views if the texture view
component of the views are not needed for decoding the
target output views. As yet another example, the one or more
processors may extract the sub-bitstream using the optimal
sub-bitstream extraction technique in which the one or more
processors extract the minimum amount of video data
needed to decode the target output views.

There may be additional examples of sub-bitstream
extraction modes such as those for examples where the
video data does not include depth data (e.g., MVC) and
scalable video coding. For instance, one example sub-
bitstream extraction mode may be the self-complete sub-
bitstream extraction mode for video data that does not
include depth data, and another example sub-bitstream
extraction mode may be the optimal sub-bitstream extraction
mode for video data that does not include depth data.

For the self-complete sub-bitstream extraction mode for
video data that does not include depth data, the MANE
device may extract all coded pictures from a view or a layer
that are need for decoding the target output views or layers.
For example, MANE device may extract all view compo-
nents from a view that is needed for decoding the target
output views.

For the optimal sub-bitstream extraction mode for video
data that does not include depth data, the MANE device may
extract only coded pictures from a view or layer that are
needed for decoding the target output views or layers, and no
coded pictures from the view or layer that are not needed for
decoding the target output views or layers. For example, the
MANE device may extract only view components from a
view that are needed for decoding the target output views,

10

15

20

25

30

35

40

45

50

55

60

65

50

and no view components from the view that are not needed
for decoding the target output views.

One example sub-bitstream extraction mode may be the
self-complete sub-bitstream extraction mode for scalable
video coding, and another example sub-bitstream extraction
mode may be the optimal sub-bitstream extraction mode for
scalable video coding. For the self-complete sub-bitstream
extraction mode for scalable video coding, the MANE
device may extract all coded pictures from a view or a layer
that are need for decoding the target output views or layers.
For example, the MANE device may extract all pictures of
a layer when the layer is needed for decoding the target
output layers.

For the optimal sub-bitstream extraction mode for scal-
able video coding, the MANE device may extract only
coded pictures from a view or layer that are needed for
decoding the target output views or layers, and no coded
pictures from the view or layer that are not needed for
decoding the target output views or layers. For example, the
MANE device may extract only pictures of a layer that are
needed for decoding the target output layers.

In one or more examples, the functions described may be
implemented in hardware, software, firmware, or any com-
bination thereof. If implemented in software, the functions
may be stored on, as one or more instructions or code, a
computer-readable medium and executed by a hardware-
based processing unit. Computer-readable media may
include computer-readable storage media, which corre-
sponds to a tangible medium such as data storage media. In
this manner, computer-readable media generally may cor-
respond to tangible computer-readable storage media which
is non-transitory. Data storage media may be any available
media that can be accessed by one or more computers or one
or more processors to retrieve instructions, code and/or data
structures for implementation of the techniques described in
this disclosure. A computer program product may include a
computer-readable medium.

In still other examples, this disclosure contemplates a
computer readable medium comprising a data structure
stored thereon, wherein the data structure includes comprise
encoded bitstream that is coded consistent with this disclo-
sure.

By way of example, and not limitation, such computer-
readable storage media can comprise RAM, ROM,
EEPROM, CD-ROM or other optical disk storage, magnetic
disk storage, or other magnetic storage devices, flash
memory, or any other medium that can be used to store
desired program code in the form of instructions or data
structures and that can be accessed by a computer. Also, any
connection is properly termed a computer-readable medium.
For example, if instructions are transmitted from a website,
server, or other remote source using a coaxial cable, fiber
optic cable, twisted pair, digital subscriber line (DSL), or
wireless technologies such as infrared, radio, and micro-
wave, then the coaxial cable, fiber optic cable, twisted pair,
DSL, or wireless technologies such as infrared, radio, and
microwave are included in the definition of medium. It
should be understood, however, that computer-readable stor-
age media and data storage media do not include connec-
tions, carrier waves, signals, or other transient media, but are
instead directed to non-transient, tangible storage media.
Disk and disc, as used herein, includes compact disc (CD),
laser disc, optical disc, digital versatile disc (DVD), floppy
disk and Blu-ray disc, where disks usually reproduce data
magnetically, while discs reproduce data optically with
lasers. Combinations of the above should also be included
within the scope of computer-readable media.

US 9,479,779 B2

51

Instructions may be executed by one or more processors,
such as one or more digital signal processors (DSPs),
general purpose microprocessors, application specific inte-
grated circuits (ASICs), field programmable logic arrays
(FPGAs), or other equivalent integrated or discrete logic
circuitry. Accordingly, the term “processor,” as used herein
may refer to any of the foregoing structure or any other
structure suitable for implementation of the techniques
described herein. In addition, in some aspects, the function-
ality described herein may be provided within dedicated
hardware and/or software modules configured for encoding
and decoding, or incorporated in a combined codec. Also,
the techniques could be fully implemented in one or more
circuits or logic elements.

The techniques of this disclosure may be implemented in
a wide variety of devices or apparatuses, including a wire-
less handset, an integrated circuit (IC) or a set of ICs (e.g.,
a chip set). Various components, modules, or units are
described in this disclosure to emphasize functional aspects
of devices configured to perform the disclosed techniques,
but do not necessarily require realization by different hard-
ware units. Rather, as described above, various units may be
combined in a codec hardware unit or provided by a col-
lection of interoperative hardware units, including one or
more processors as described above, in conjunction with
suitable software and/or firmware.

Various examples have been described. These and other
examples are within the scope of the following claims.

What is claimed is:

1. A method of processing video data, the method com-
prising:

receiving a bitstream of encoded video data;

selecting a sub-bitstream extraction mode from a plurality

of sub-bitstream extraction modes, wherein each of the
sub-bitstream extraction modes defines views or layers
having coded pictures that are to be extracted from the
bitstream to allow decoding of target output views or
target output layers, wherein each coded picture com-
prises one or more video coding layer network abstrac-
tion layer (VCL NAL) units of a view or a layer within
an access unit, wherein one or more of the coded
pictures in a view or layer are inter-predicted with a
picture in another view or layer, and wherein each of
the sub-bitstream extraction modes for views defines a
manner in which texture view components and depth
view components are extracted; and

extracting, from the bitstream, a sub-bitstream in the

manner defined by the selected sub-bitstream extrac-
tion mode.

2. The method of claim 1, wherein each coded picture of
a view comprises one of a view component, a texture view
component, and a depth view component.

3. The method of claim 2, wherein selecting a sub-
bitstream extraction mode comprises selecting a self-com-
plete sub-bitstream extraction mode, and wherein extracting
the sub-bitstream comprises extracting, when the selected
sub-bitstream extraction mode is the self-complete sub-
bitstream extraction mode, all available texture view com-
ponents and depth view components of the view if a texture
view or a depth view of the view is needed for decoding the
target output views.

4. The method of claim 2, wherein selecting a sub-
bitstream extraction mode comprises selecting an interme-
diate sub-bitstream extraction mode, and wherein extracting
the sub-bitstream comprises extracting, when the selected
sub-bitstream extraction mode is the intermediate sub-bit-
stream extraction mode, one of:

25

40

45

52

all available texture view components of the view if the
texture view of the view is needed for decoding the
target output views, and no depth view components of
the view if the depth view of the view is not needed for
decoding the target output views; and

all available depth view components of the view if the

depth view of the view is needed for decoding the target
output views, and no texture view components of the
view if the texture view of the view is not needed for
decoding the target output views.

5. The method of claim 4, further comprising:

maintaining a list of texture views that are to be extracted

from the views; and

maintaining a list of depth views that are to be extracted

from the views,

wherein the list of texture views includes a texture view

of at least one view, and the list of depth views does not
include a corresponding depth view of the at least one
view, or the list of depth views includes a depth view
of the at least one view, and the list of texture views
does not include a corresponding texture view of the at
least one view,

wherein extracting all available texture view components

and no depth view components comprises:

determining whether a texture view component belongs
to a texture view identified in the list of texture
views;

extracting the texture view component only if the
texture view component belongs to the texture view
identified in the list of texture views; and

avoiding extracting a corresponding depth view com-
ponent to the texture view component if the depth
view component belongs to a depth view that is not
identified in the list of depth views,

and

wherein extracting all available depth view components

and no texture view components comprises:

determining whether a depth view component belongs
to a depth view identified in the list of depth views;

extracting the depth view component only if the depth
view component belongs to the depth view identified
in the list of depth views; and

avoiding extracting a corresponding texture view com-
ponent to the depth view component if the texture
view component belongs to a texture view that is not
identified in the list of texture views.

6. The method of claim 2, wherein selecting a sub-
bitstream extraction mode comprises selecting an optimal
sub-bitstream extraction mode, and wherein extracting the
sub-bitstream comprises extracting, when the selected sub-
bitstream extraction mode is the optimal sub-bitstream
extraction mode, only texture view components and depth
view components of a view that are needed for decoding the
target output views, and no texture view components and
depth view components of the view that are not needed for
decoding the target output views.

7. The method of claim 1, wherein selecting a sub-
bitstream extraction mode comprises selecting a self-com-
plete sub-bitstream extraction mode, and wherein extracting
the sub-bitstream comprises extracting, when the selected
sub-bitstream extraction mode is the self-complete sub-
bitstream extraction mode, all coded pictures from the view
or layer that are needed for decoding the target output views
or layers.

8. The method of claim 1, wherein selecting a sub-
bitstream extraction mode comprises selecting an optimal
sub-bitstream extraction mode, and wherein extracting the

US 9,479,779 B2

53

sub-bitstream comprises extracting, when the selected sub-
bitstream extraction mode is the optimal sub-bitstream
extraction mode, only coded pictures from the view or layer
that are needed for decoding the target output views, and no
coded pictures from the view or layer that are not needed for
decoding the target output views.

9. The method of claim 1, wherein selecting the sub-
bitstream extraction mode comprises receiving, with exter-
nal means, the sub-bitstream extraction mode, wherein the
external means comprises a unit external to a video decoder,
wherein the external means sets one or more variables,
wherein each variable defines a sub-bitstream extraction
mode, and wherein the external means selects a value from
the one or more variables which is used by the video decoder
for decoding the sub-bitstream and provided as input to the
video decoder.

10. A device for processing video data, the device com-
prising:

a memory configured to store video data and

one or more processors comprising integrated and logic

circuitry, the one or more processors configured to:
receive a bitstream of encoded the video data from the
memory;

select a sub-bitstream extraction mode from a plurality of

sub-bitstream extraction modes, wherein each of the
sub-bitstream extraction modes defines views or layers
having coded pictures that are to be extracted from the
bitstream to allow decoding of target output views or
target output layers, wherein each coded picture com-
prises one or more video coding layer network abstrac-
tion layer (VCL NAL) units of a view or a layer within
an access unit, wherein one or more of the coded
pictures in a view or layer are inter-predicted with a
picture in another view or layer, and wherein each of
the sub-bitstream extraction modes for views defines a
manner in which texture view components and depth
view components are extracted; and

extract, from the bitstream, a sub-bitstream in the manner

defined by the selected sub-bitstream extraction mode.

11. The device of claim 10, wherein each coded picture of
a view comprises one of a view component, a texture view
component, and a depth view component.

12. The device of claim 11, wherein the one or more
processors are configured to select a self-complete sub-
bitstream extraction mode, and wherein, when the selected
sub-bitstream extraction mode is the self-complete sub-
bitstream extraction mode, the one or more processors are
configured to extract all available texture view components
and depth view components of the view if a texture view or
a depth view of the view is needed for decoding the target
output views.

13. The device of claim 11, wherein the one or more
processors are configured to select an intermediate sub-
bitstream extraction mode, and wherein, when the selected
sub-bitstream extraction mode is the intermediate sub-bit-
stream extraction mode, the one or more processors are
configured to extract one of:

all available texture view components of the view if the

texture view of the view is needed for decoding the
target output views, and no depth view components of
the view if the depth view of the view is not needed for
decoding the target output views; and

all available depth view components of the view if the

depth view of the view is needed for decoding the target
output views, and no texture view components of the
view if the texture view of the view is not needed for
decoding the target output views.

5

10

15

20

25

30

35

40

45

50

55

60

65

54

14. The device of claim 13, wherein the one or more
processors are configured to:

maintain a list of texture views that are to be extracted

from the views; and

maintain a list of depth views that are to be extracted from

the views,

wherein the list of texture views includes a texture view

of at least one view, and the list of depth views does not
include a corresponding depth view of the at least one
view, or the list of depth views includes a depth view
of the at least one view, and the list of texture views
does not include a corresponding texture view of the at
least one view,

wherein, to extract all available texture view components

and no depth view components, the one or more

processors are configured to:

determine whether a texture view component belongs
to a texture view identified in the list of texture
views;

extract the texture view component only if the texture
view component belongs to the texture view identi-
fied in the list of texture views; and

avoid extracting a corresponding depth view compo-
nent to the texture view component if the depth view
component belongs to a depth view that is not
identified in the list of depth views,

and

wherein, to extract all available depth view components

and no texture view components, the one or more

processors are configured to:

determine whether a depth view component belongs to
a depth view identified in the list of depth views;

extract the depth view component only if the depth
view component belongs to the depth view identified
in the list of depth views; and

avoid extracting a corresponding texture view compo-
nent to the depth view component if the texture view
component belongs to a texture view that is not
identified in the list of texture views.

15. The device of claim 11, wherein the one or more
processors are configured to select an optimal sub-bitstream
extraction mode, and wherein, when the selected sub-bit-
stream extraction mode is the optimal sub-bitstream extrac-
tion mode, the one or more processors are configured to
extract only texture view components and depth view com-
ponents of a view that are needed for decoding the target
output views, and no texture view components and depth
view components of the view that are not needed for
decoding the target output views.

16. The device of claim 10, wherein the one or more
processors are configured to select a self-complete sub-
bitstream extraction mode, and wherein, when the selected
sub-bitstream extraction mode is the self-complete sub-
bitstream extraction mode, the one or more processors are
configured to extract all coded pictures from the view or
layer that are needed for decoding the target output views or
layers.

17. The device of claim 10, wherein the one or more
processors are configured to select an optimal sub-bitstream
extraction mode, and wherein, when the selected sub-bit-
stream extraction mode is the optimal sub-bitstream extrac-
tion mode, the one or more processors are configured to
extract only coded pictures from the view or layer that are
needed for decoding the target output views, and no coded
pictures from the view or layer that are not needed for
decoding the target output views.

US 9,479,779 B2

55

18. The device of claim 10, wherein, to select the sub-
bitstream extraction mode, the one or more processors are
configured to receive, with external means, the sub-bit-
stream extraction mode, wherein the external means com-
prises a unit external to a video decoder, wherein the
external means sets one or more variables, wherein each
variable defines a sub-bitstream extraction mode, and
wherein the external means selects a value from the one or
more variables which is used by the video decoder for
decoding the sub-bitstream and provided as input to the
video decoder.

19. A non-transitory computer-readable storage medium
having instructions stored thereon that when executed by
one or more processors of a device for processing video data
cause the one or more processors to:

receive a bitstream of encoded video data;

select a sub-bitstream extraction mode from a plurality of

sub-bitstream extraction modes, wherein each of the
sub-bitstream extraction modes defines views or layers
having coded pictures that are to be extracted from the
bitstream to allow decoding of target output views or
target output layers, wherein each coded picture com-
prises one or more video coding layer network abstrac-
tion layer (VCL NAL) units of a view or a layer within
an access unit, wherein one or more of the coded
pictures in a view or layer are inter-predicted with a
picture in another view or layer, and wherein each of
the sub-bitstream extraction modes for views defines a
manner in which texture view components and depth
view components are extracted; and

extract, from the bitstream, a sub-bitstream in the manner

defined by the selected sub-bitstream extraction mode.

20. The non-transitory computer-readable storage
medium of claim 19, wherein each coded picture of a view
comprises one of a view component, a texture view com-
ponent, and a depth view component.

21. The non-transitory computer-readable storage
medium of claim 19, the instructions that cause the one or
more processors to select a sub-bitstream extraction mode
comprise instructions that cause the one or more processors
to select a self-complete sub-bitstream extraction mode, and
wherein the instructions that cause the one or more proces-
sors to extract the sub-bitstream comprise instructions that
cause the one or more processors to extract, when the
selected sub-bitstream extraction mode is the self-complete
sub-bitstream extraction mode, all coded pictures from the
view or layer that are needed for decoding the target output
views or layers.

22. The non-transitory computer-readable storage
medium of claim 19, wherein the instructions that cause the
one or more processors to select a sub-bitstream extraction
mode comprise instructions that cause the one or more
processors to select an optimal sub-bitstream extraction

10

15

20

25

35

40

45

50

56

mode, and wherein the instructions that cause the one or
more processors to extract the sub-bitstream comprise
instructions that cause the one or more processors to extract,
when the selected sub-bitstream extraction mode is the
optimal sub-bitstream extraction mode, only coded pictures
from the view or layer that are needed for decoding the target
output views, and no coded pictures from the view or layer
that are not needed for decoding the target output views.

23. A device for processing video data, the device com-
prising:

means for receiving a bitstream of encoded video data;

means for selecting a sub-bitstream extraction mode from

a plurality of sub-bitstream extraction modes, wherein
each of the sub-bitstream extraction modes defines
views or layers having coded pictures that are to be
extracted from the bitstream to allow decoding of target
output views or target output layers, wherein each
coded picture comprises one or more video coding
layer network abstraction layer (VCL NAL) units of a
view or a layer within an access unit, wherein one or
more of the coded pictures in a view or layer are
inter-predicted with a picture in another view or layer,
and wherein each of the sub-bitstream extraction modes
for views defines a manner in which texture view
components and depth view components are extracted;
and

means for extracting, from the bitstream, a sub-bitstream

in the manner defined by the selected sub-bitstream
extraction mode.

24. The device of claim 23, wherein each coded picture of
a view comprises one of a view component, a texture view
component, and a depth view component.

25. The device of claim 23, wherein the means for
selecting a sub-bitstream extraction mode comprises means
for selecting a self-complete sub-bitstream extraction mode,
and wherein the means for extracting the sub-bitstream
comprises means for extracting, when the selected sub-
bitstream extraction mode is the self-complete sub-bitstream
extraction mode, all coded pictures from the view or layer
that are needed for decoding the target output views or
layers.

26. The device of claim 23, wherein the means for
selecting a sub-bitstream extraction mode comprises means
for selecting an optimal sub-bitstream extraction mode, and
wherein the means for extracting the sub-bitstream com-
prises means for extracting, when the selected sub-bitstream
extraction mode is the optimal sub-bitstream extraction
mode, only coded pictures from the view or layer that are
needed for decoding the target output views, and no coded
pictures from the view or layer that are not needed for
decoding the target output views.

#* #* #* #* #*

